UPDATE KYAN!

Kyan Software Volume 1 Number 1
1850 Union Street #183 (c) 1985 Kyan Software
San Francisco, CA 94023 November/December lssue

Apple Edition

What's New

Welcome to "UPDATE KYAN"

Welcome to the first issue of "UPDATE KYAN", the bimonthly newsletter published by
Kyan Software for registered owners of Kyan Software products. The purpose of "UPDATE
+e+. KYAN" is to provide you with new information about Pascal programming and to keep you
posted on product updates and new product releases. We encourage you to subscribe.

"UPDATE KYAN" is organized into five sections.

WHAT'S NEW a section containing news about Kyan Software, product revisicns and
updates, and new product releases.

KYAN PASCAL UPDATE a section containing news and information about Kyan Pascal. This
section describes how the software works and the rationale behind the design. It also

discusses undocumented features in the software and other subjects not fully covered in
the manual.

PASCAL PROGRAMMING a section containing programming tips, new Pascal routines, bug
reports and workarounds, and other information which will be useful to you when
programming in Pascal., Contributions from Kyan Pascal users are encouraged.

ASSEMBLY LANGUAGE PROGRAMMING a section containing programming tips and new assembly

language routines which can be used in your programs. Contributions to this corner are
also solicited from Kyan Pascal users.

LETTERS to the Editor a section containing letters and questions received from users
of Kyan Pascal. Many of these letters express opinions or contain questions which may be
of interest to you. We encourage you to tell us what you like or don't like about Kyan

Software products. Write us about what new products you would like to see from Kyan
Software.

We are quite excited about "UPDATE KYAN", We believe it will become a valuable

resource to our users and another good reason to purchase software products from Kyan
Software.

A Little Background on Kyan Software

Kyan Software was formed in early 1984 to develop professional quality, low cost,
programming language implementations for microcomputers. Kyan's first product, a p-code
compiler for the Commodore 64, was introduced in August 1984 and was well received by
schools and students as a tool for learning the Pascal language.

Kyan's second product was a machine code Pascal compiler which would run on any computer
with a 6502 microprocessor. This new compiler was introduced in Spring of 1985 and became
the first full implementation of Jensen/Wirth Pascal for the Apple II, Atari and Commodore
family c¢f computers.

Page 2

Kyan Software is still a small company with only a handful of full and part time
employees. We are continuing to work on upgrades to our Pascal compilers and are
expanding the product line with toolkits for Pascal programmers. We are also working on
several new programming languages which will be introduced in 1986.

Kyan Software is thankful for the support of our customers. To show our appreciation,
Kyan Software adhers to a policy of offering revisions and upgrades to registered owners
at little or no charge. We want to be sure that each of you is working with the latest
release of the software. We also offer you advance notice of new products and special
discounts on the new software. We thank you for supporting Kyan Software and look forward
to serving you in the future.

Kyan Pascal ... Version 1.2

We are now shipping Version 1.2 of Kyan Pascal for the Apple. This revision corrects a
couple of bugs which were uncovered in Versions 1.0 and 1.1 and contains a faster graphics
algorithm. If the slow graphics annoy you or you keep bumping into what you think is a
bug in the software, then return your Kyan Pascal source disk for a free upgrade. If you
haven't noticed any problems or you can hold out for a while longer, we ask that you wait
for a major upgrade which will be announced in the next issue of "UPDATE KYAN".

KYAN PASCAL A Product in Evolution

A programming language is different from other types of software. Unlike a word
processing or spreadsheet package, it is extremely difficult to define all of the possible
uses of the software. As an analogy, consider a spoken language such as English or
French; how many different ways are there to use the language syntax? You can write a
poem, a letter, a rock video, or the great (or not so great) American novel. Will the
language support all of these applications? Will the typewriter you are using have all
the symbols and characters you need? Will the reader of your creation know what all the
symbols, characters, and words mean?

We are confronted with similar questions when implementing a programming language. Jensen
and Wirth solved most of the Pascal syntax problems. But, Kyan must deal with the
problems of accurately interpreting this syntax and correctly compiling a listing which is
meaningful to the computer. We constantly face the question, "what program construction
(legal or illegal) can cause a crash during compilation or runtime?"

During the development and beta testing of each new product, we subject it to a.battery of
test programs to make sure it works properly under as many conditions as possible. When
we release the product to the market, we have a high level of confidence that it will
perform in a satisfactory manner.

However, users inevitably write programs which uncover a bug which we missed. When this
occurs, the customer calls our tech support group and points out the problem (sometimes in
very graphic terms!). In 99 cases out of 100, we are able to quickly correct the problem
and send the customer a new disk. This fix is then added to the list of changes which
will be released in the next general REVISION of the compiler (i.e., version 1.l to 1.2).

Over a period of time, the bugs we find become far more subtle -- 997 of the users would
never encounter them. But, since we want to ship the best possible product, we strive to
document and fix every bug identified.

Then, just when the product is "perfect", the engineers come up with some new enhancements
to the product (i.e., "let's increase the size of the symbol table and add some new
extensions!™). We then go through another development cycle and release a product UPGRADE
(i.e., Version 1.3 to 2.0). And, the whole process begins again.

Page 3

So, a programming language product like Kyan Pascal is never done ... it is constantly
evolving to a better and more refined state. We can never say with absolute certainty
that it is "bug-free". However, what we can say is that when you buy a product from Kyan
Software, you will receive the highest quality possible, good technical support, and
periodic revisions and upgrades at the lowest possible cost.

Kyan Pascal Update

We are frequently asked.questions about how Kyan Pascal is designed and how it operates.
The following notes should give you a better understanding of how Kyan Pascal works.

The Kyan Pascal Compiler/Assembler

Kyan Pascal is a comprised of a Pascal compiler which produces assembly language output
and an assembler which produces an executable file. When you compile a Pascal source code
file, the compiler produces assembly source code that is optimized for runtime speed. The
assembler takes this source code and reads it twice; on the first pass, it builds the
assembler symbol table; on the second pass, it produces 6502 machine code. This two pass
approach allows all forward references to be resolved and results in generation of the
fastest and most efficient machine code possible for the 6502 processor.

Runtime Benchmarks and Arithmetic Precision

Kyan Pascal produces code that runs about twice as fast on a 6502 microprocessor as the
best selling Pascal does on a Z80 (assuming equal CPU clock rates). The benchmark used
for this comparison is the Sieve Algorithm and the time required to generate the first
1,399 prime numbers (execution time: 12 seconds).

The arithmetic used in Kyan Pascal is either 16 bit integer or 13 decimal digit BCD. Kyan
Pascal uses BCD real numbers to eliminate round-off errors of binary representations.
(Who wants to have a result of a simple division displayed as 2.99999999 instead of 3.07?)

Calculation speed is proportional to the square of the precision of the real number. In
floating point benchmarks, Kyan Pascal produces code that runs at approximately the same
speed as compilers with 7 to 9 digit precision. For equivalent precision, Kyan Pascal is
therefore running 2 to 4 times faster.

Source Code vs. Object Code Linking

In Kyan Pascal you can link program modules together by "including" Pascal or assembly
language source files into the main program. An object module linker is not used. We
decided not to use an object module linker because it requires two passes of the object
modules to produce an executable file. The time required for these two passes is more
than that required for Kyan Pascal to recompile the sources. Object module linking has
the additional disadvantage of producing non-standard effects on modules of the Pascal
program (i.e., no scope rules, no parameter checking, and no mechanism for assigning a
lexical level to variables).)

Notes about the Kyan Pascal/ProDOS Interface

When you purchase Kyan Pascal, the ProDOS operating system and the ProDOS FILER are
included on the diskette. These are the only files you need to develop and run programs
using Kyan Pascal. Due to space constraints on the diskette, Kyan Pascal does not contain
APPLESOFT BASIC, DOS 3.3 <> ProDOS conversion utilities, or the other utilities found on a
complete ProDOS source disk.

Page 4

Kyan Pascal does not have its own operating system or environment. It operates entirely
within ProDOS. When you exit from the editor, compiler, or your own program, you will see
the ProDOS prompt ("™>"); it is asking for the pathname of the next program to be run.

The object module produced by Kyan Pascal is a SYSTEM file. This means you can call and
run your programs anytime you see the ProDOS prompt.

Programmers should be careful not to confuse ProDOS file management commands with those of
Apple BASIC. File management in ProDOS is accomplished using the ProDOS FILER. When you
are programming in Apple BASIC, you have similar capabilities but these are BASIC commands
and not ProDOS commands.

BASIC programs (including assembler programs that are in BLOAD format) need to be run from
the BASIC environment. This is in contrast to Pascal programs which are run from ProDOS.

Any Pascal program with a ".SYSTEM" extension to the filename will execute immediately
after boot-up. The Kyan copyright notice, HELLO.SYSTEM, is just such a program. (Note:
Please refer to the PASCAL PROGRAMMING Section for more information about how to set-up an
auto-boot program). '

Pack and Unpack

PACK and UNPACK are standard procedures in Pascal. Kyan Pascal automatically packs all
structures at the byte level. The only variable type which is not fully packed is
booleans. Because of the poor bit handling of the 6502 microprocessor, Kyan Pascal does
not support the packing of booleans. Our packed and unpacked structures are identical.

Commonly askad questions about Kyan Pascal's Runtime Library

What is the Runtime Library? The Runtime Library is a software module which contains the
general purpose routines used in Pascal programs. Library routines include input/output
functions, floating point package, transcendental functions, and set routines. The
Runtime Library conserves space on the disk. Rather than requiring a copy of every Pascal
routine for each program, the Runtime Library allows one copy of the routines to be shared
by many programs. Since the Runtime Library is approximately 10K in size, you can see how
much disk space you gain if you want to put 3 or 4 programs on the same disk.

Do I need a copy of the Library on each disk? Yes. The Library must be copied onto each
disk so that your programs can be run independently of the Kyan Pascal program disk.

Can I just copy parts of the Runtime Library onto the disk? No. The Pascal Library is a
single binary file and cannot be broken up or partially loaded.

If I sell my programs with a copy of the Library on the disk, do I need to have a license
and pay royalties? No. Kyan Software does not believe you should have to pay us for
software you have developed. You are free to use the Kyan Runtime Library with you
software provided that you acknowledge Kyan Software's copyright.

How do I acknowledge Kyan's copyright? Simple. Just add the following notice to the
diskette label —-- "Pascal Library (c) Kyan Software 1985" -- and repeat this notice in the
manual along with your own copyright notice.

Page 5
Pascal Programming

This section of the newsletter is reserved for Pascal programming tips and new routines
developed by the Kyan technical staff and by Kyan Pascal users. If you have developed
Pascal routines which you think might be of interest to other users, send them to us. We
will select the best submissions and publish them with your name.

How to set up programs to boot automatically.

When you boot a disk on your Apple II, the ProDOS operating system directs the computer to
seek out and load the first "System" file listed in the directory. "System" files are
easy to identify because they have a filename followed by ".SYSTEM".

Your program will automatically load and run if the program name ends in ".SYSTEM".

First, format the disk. Then, copy the ProDOS operating system and Pascal Runtime Library
onto the disk. Next, rename your program so that the filename ends in ".SYSTEM".

Finally, make sure that your program is the first "System" file listed in the directory.

For example, suppose you want your program "Apple" to load and run automatically. First,
copy ProDOS and the Runtime Library onto the disk. Then, change the filename of your
compiled program from "Apple.0" to "Apple.System" using the file Rename command in the
ProDOS FILER. Finally, check to make sure that "Apple.System" is the first System file
listed in the directory. Now, whenever this disk is booted, the program "Apple" will
automatically load and run.

How to raise a number to a power in Standard Pascal

Standard Pascal has no exponentiation operator. You can work around this limitation in
the language by including the following routine in your pascal program.

function power(x,n:real):real;
begin

power :=exp{(n*1n(x))

end;

Page Zero Memory

The page zero memory up to $F is used for pointers to the stack and the heap. Locations
$10 to $1F are used as temporaries for the Pascal Runtime Library routines. They are also
available to assembler users for use as temporary variables. The remainder of page O is
used for ProDOS temporaries and an evaluation stack.

The evaluation stack is used to evaluate expressions. The results are moved to the
variable stack. The X register of the 6502 is used as the evaluation stack pointer.

The 6502 Stack

The 6502 stack is used to save the return linkage of all subroutines. Procedures and
functions can be nested 127 levels deep before the stack overflows.

The Runtime Library
The Kyan Runtime Library resides from $800 to $1FFF and $B000 to $BEFF. The Library is

loaded immediately when program control is passed to the Pascal program. The program
Library must reside in the same directory as the program object code.

Page 6
The Kyan Object Code

The compiled code is loaded starting from location $2000 unless relocated upward by an ORG
command to make room for the high resolution graphics between $2000 and $3FFF.

The Heap

The Heap starts at the next location above the loaded program and grows toward high
memory. The Heap management looks for the first available space of adequate size for
dynamic variable storage with the NEW procedure and frees up the used space with the
DISPOSE procedure.

The Stack

The Stack starts at $B000 and grows toward low memory. Global variables are referenced
from the start of the Stack. Local variables are referenced from the Local pointer. The
Stack structure supports access of variables that are at intermediate Lexical levels
(neither Local or Global).

ProDOS Error Messages

The following ProDOS error messages supplement those found in the back of your Kyan Pascal
manual.

File Types ProDOS (MLI) Error Codes

$00 Typeless file $00 No error

$04 ASCII text file $01 Bad system call number
$06 General binary file $04 Bad system call

$OF Directory file parameter count

$CO-EF ProDOS reserved $25 Interrupt table full

$FO ProDOS added command line $27 1/0 error

$F1-F8 ProDOS user defined files 1-8 $28 No device connected

$F9 ProDOS reserved) $2B Disk write protected

$FA Integer BASIC program file $2E Disk switched

$FB Integer BASIC variable file $40 Invalid pathname

$FC Applesoft program file . $42 Max number of files open
$FD Applesoft variables file $43 1Invalid reference number
$FE Relocatable code file (EDASM) $44 Directory not found

$FF ProDOS system file $45 Volume not found

$46 File not found

$47 Duplicate filename

$48 Volume full

$49 Volume directory full

$4A Incompatible file format, also a
ProDOS Directory

$4B Unsupported storage type

$4C End of file encountered

$4D Position out of range

$4E File access error, also locked file

$50 File is open

$51 Directory structure damaged

$52 Not a ProDOS volume

$53 Invalid system call parameter

$55 Volume Control Block table full

$56 Bad buffer address

$57 Duplicate volume

$5A File strufure damaged

Page 7
Assembly Language Programming

The Kyan Pascal manual is rather sparse in its treatment of assembly language programming.
The following sections provide you with more information about this very powerful feature
of Kyan Pascal. (Note: If you want to learn more about assembly language programming,
please refer to the Letters Section of the Newsletter for a list of excellent technical
reference manuals).

Variable Names in Assembly Language

In assembly language, the Pascal variable names are not available because the assembler

has no scope rules like Pascal. Variable offsets must be computed by hand. Consider the
following function:

function test(a:integer):integer;
var b:integer;

begin

end;

The stack frame for this function looks like this:

sp [] lexical level
[] 1sb of "local"
[] msb of "local"
[] 1sb of "b"
[] msb of "b"
[] 1sb of "test"
[] msb of "test"
[] 1sb of "a"
[] msb of "a"
local

The variables are stacked in the reverse order in which they are declared. Integers and
enumerated types are allocated 2 bytes; characters and Booleans are allocated 1 byte; and,

reals are allocated 8 bytes. Zero page locations "T" through "T+$E" are available as
temporary workspace.

With this in mind, we can implement "peek” and "poke"™ as follows:

procedure poke(loc,val:integer); function peek(loc:integer):integer;
begin begin
#A #A
LDY #5 ; LOC LDY #5 ;LOC
LDA (sp),Y LDA (SP),Y
STA T STA T
- INY INY
LDA (SpP),Y LDA (SP),Y
STA T+1 STA T+1
LDY #3 ; VAL LDY #0 s PEEK
LDA (SP),Y LDA (T),Y
; LDY #3
LDY #0 ;s POKE STA (SP),Y
STA (T),Y INY
LDA #0
end; STA (SP),Y
#

end;

Page 8

Assembly Language Interface for Functions

Functions can be used to return a value to an expression directly instead of using a
procedure and modifying the actual parameters passed by name (address). The value
assigned by the assembler routine to the function name is returned to the expression where
the function is called. The function name is located after the passed parameters on the
stack and before the local variables. Access to the passed parameters is the same as that
for procedures. In the example below, the value of an integer parameter "B" is picked up
and a boolean function value is returned.

Function XYZ(A,B,C: Integer): Boolean;
Var X: integer;
begin

#A

LDY #8; OFFSET TO VARIABLE B
LDA (SP),Y; PUT LSB OF B IN ACC
STA

INY

LDA (SP),Y; PUT MSB OF B IN ACC
STA

iaDA LU

LDY #5; OFFSET TO FUNCTION VARIABLE, XYZ (BOOLEAN)
STA (SP),Y; SAVE ACC IN XYZ

#

end;

In the above example, the offset from the stack pointer to the function name is calculated
as follows:

3 bytes offset from (SP) to first local variable
+2 bytes size of local variable, X
5 total offset

The offset to the variable B is:

3 bytes offset from (SP) to first local variable
+2 bytes size of local variable, X
+1 byte for the boolean, XYZ
+2 bytes for the integer, C

8 total offset

Page 9
Assembly Language Interface for Parameters passed by Name (address)

When parameters are passed by name, the variable's address is passed to the function or
procedure rather than the value. If the value of the variable is altered by the called
routine, the new value will also be visible in the calling procedure. This is a
convenient mechanism of returning values of parameters from a procedure. In order to
reach the parameters declared in a procedure with "Var", the parameter address must first
be read. The address is then used to access the parameter. The example below
demonstrates accessing a parameter "C" passed by name to a procedure "XYZ".

Procedure XYZ(VarA,B,C:integer);
begin

#A

LDY #3

LDA (SP),Y; GET LSB OF ADDRESS OF C
STA T; SAVE IN PAGE ZERO TEMP

INY

LDA (SP),Y; GET MSB OF ADDRESS OF C
STA T+1

LDY #0

LDA (T),Y; GET LSB OF C

STA ..

#

end;

In the above example the offset from the stack pointer to the address of C is:
3 bytes offset from (SP) to first local variable
0 local variables
3 bytes total to the LSB and 4 bytes to the MSB of the address

The address is then put in the zero page temporary T and indirect references are then made
to C with T.

Predefined Labels

The following table gives the absolute locations of the predefined labels SP, LOCAL, and
T. SP and LOCAL contain the addresses of the bottom and top of the Pascal variables
stack, respectively. T is the start of the temporary registers. There can be up to 16
temporary labels going from T to T+15.

SP EQU 4
LOCAL EQU 2
T EQU 16

Manual Errata

The table in the manual showing the number of bytes of memory provided on the stack for
each type of variable or constant contains an error. Char and Boolean types are provided
1 byte of memory rather than the 2 bytes shown in the table. Similarly, the Value
Parameter (Char,Boolean) should be 1 byte.

Page 10
New Assembly Language Routines
You can add the following routines to your library of Pascal extensions. To use them: 1)
type the program using the Kyan Pascal editor and save the file; 2) include the routine
("# filename") in the declarations section of your Pascal program; and 3) call the routine

as needed in your Pascal program.

Random Number Generator

Filename: RANDOM.I
Function: returns a real number between O and 1.
Assembly Language Listing: *

FUNCTION RANDOM:REAL: ROL FOLYMN+4
BEGIN ROL FOLYN+S
He ROL FOLYN+&
TAé& ROL. FPOLYN+7
FHA BCC PFPOLYZE
LD& #O :
STA T LDX #O
RANT INC T FOLYZ LDA FPOLYN, X
JSF POLY EOR GEN,X
CMF #0O STA FOLLYN, X
EEG RANt INX
ORA #HEL1O CFX #3
LDY #3Z BCC FPOLYZ2
STA (SFy,¥Y . SEC
RAMZ INY FOLYS ROL T+2
JSR FOLY CFY #4
ROL. A BCLC FOLLY1
ROL A H
ROL. A FLA
ROL A Tay
AMD #EFO LDA T+2
STa T+1 AMND #FOF
JSR FOLY CME #F0A/
ORA T+1 BECS FOLY
STH (SR, Y RTS
CRY #9 :
BCU RAENZ :
LDa T GEN DW &1
INY DB $fAZ
5Ta (SF:,Y DE #14&
FLA DE *AZ2
TAX DB 9]
+# DR *C7Z
END3 DE #9732
#A DB ®CoO
FOLY TYé& :
FHA FOLLYN DW #&53
LDY #O DB #42
FOLY1 INMY DE #£A41
CLC . DE #1732
ROL. FOLYN DE $£5%
ROL FOLYMN+1 DB 0%
RO POLYN+2 DE 072
ROL. FOLYN+Z DB #87

If you want to test the "randomness" of RANDOM.I, try the following Pascal test

Page 11

program. It computes the mean and standard deviation of random numbers generated by

the RANDOM.I routine.

FROGRAM TESTR;
VAR N, I: INTEGER;
X,Y,Z:REAL;
#I RANDOM. I
BEGIN
REFEAT BEGIN

WRITE ('NUMBRER OF RANDOM-NUMEBERS

READLN((N) 3
Ye:=0j3

23=03

FOR I:= 1 TO M DO BEGIM

X =RANDOM:
Zi=Z+X3

Yr=Y+ (O.5-X)*{0G,5-X)

END;
WRITELN{ MEAN (1/2)=
END g
UNTIL N=2;
END.

Go To X,Y Routine

Filename: GOTOXY.I

Procedure: positions the cursor on the screen at location X,Y.

Assembly Language Listing:

FROCEDURE GOTOXY (X,7¥: INTEGER! 3

BEGINM

#Hi

LDY #7Z

LDA (9F) .7
TAY

DEx

STY £29
LDY #E

LDA (SF),Y
TAY

DEY

STY 24
J5R ¥FCEZ2
4
END;

‘LZ/N:1S,

oy

VERTANMCE

TaY/(N=-1)213) s

Page 12

If you want to test GOTOXY.I, try the following Pascal test program. It will ask
a question at location (X,Y) and then print the answer at location (X+6,Y+3).

FROGRAM TESTGOS
VAR X,Y,Z: INTEGER;
#1 GOTOXY.I
BEGIN

X:=153Y:1=103

GOTOXY (X,Y); WRITELN(ENTER VALUE ') 3;GOTOXY (X+12,Y)3
READLLN (Z)3; GAOTOXY (X+6,Y+3); WRITELN (ANSWER " ,Z):
END.

Letters to the Editor

"eeee can you recommend a good Pascal programming book which can be used to supplement the
Kyan Pascal tutorial manual?"

Programming in Pascal, P. Grogono, Addison-Wesley
Publishing, 1978.

Pascal, A Problem Solving Approach, E.B. Kaufman,
Addison-Wesley Publishing, 1982,

Introduction to Pascal, R. Zaks, Sybex, Inc. 1981.

Pascal User Manual and Report, K. Jensen and N. Wirth,
Springer-Verlag, 1974,

"... I want to begin using assembly language routines in my Pascal programs. Are there

any books you would recommend?"

Programming a Micro-computer: 6502, C.C. Foster,
Addison-Wesley Publishing, 1978.

6502 Assembly Language Programming, L.A. Leventhal,
Osborne/McGraw-Hill, Inc. 1979.

"... I want to learn more about ProDOS, but none of the stores in my area carry the Apple

manuals. Can you help?”

Until quite recently, Apple maintained a dealer policy which made it very difficult
for bookstores to carry Apple manuals. However, they have now given book distribution to
McGraw~Hill, and you will begin to see more technical reference manuals for Apple products
in your local stores. In the meantime, you can order a copy of the ProDOS User's Manual
and the ProDOS Technical Reference Manual directly from the McGraw-Hill Bookstore, 1221
Avenue of the Americas, New York, NY 10020. You can also order the books by phone
(212-512-6230) using a major credit card.

Page 13

"... after running a graphics program, I have a lot of garbage on the screen and the
software won't work properly. What is the problem?"

After running a graphics program, your Apple is still in the hi-res graphics mode.
To get out of hi-res, simply press <control><reset>. The ProDOS prompt will then appear
and you can enter any system filename (e.g., ED, E80, or your program name if you want to
run it again).

We welcome letters from Kyan Pascal programmers. You can send us questions, programming
hints, gripes, new product ideas, or anything else which might be of interest to other
Kyan Pascal owners. We will print as many as possible in this space.

Send your letters to:

Update Kyan

Kyan Software

1850 Union Street, #183
San Francisco, CA 94123

Bkyan

December 31, 1985

Dear Friend:

Sinzce the introduction of Kyan Pascal in Spring 1985, we have received many
comments, suggestions, and not a few complaints from our users. Well, we want you to
know that we listen. And, asa result of your input, we are introducing s totally new
version of Kyan Pascal, three programming toolkits, and & new 6502 Macro
Assembler/Linker.

Version 2.0 of Kyan Pascal is described in the Kyan Pascal section of this newsletter.
The toolkits and Assembler/Linker are described in the "What's New" section. We are
quite proud of these new additions to the Kyan Software product family and believe you
will find them to be extremely useful.

Ve are especially proud of the new UNIX-like operating environment in Kyan Pascal
which we call KIT'®, With KIXT'® we have turned ProDos into a true operating system.
Now you caa forget the Filer. Simple command line arguments entered at the system
prompt allow you to alter files, work with directories, dump screens to the printer, and
more. If you have worked with UNIX before, you know about the speed and
convenience of this powerful operating system. If you haven't get ready for an
exciting new experience.

In keeping up with our police of low cost upgrades for existing owners, we are
offering all registered owners of Kyan Pascal Version 1.- the right to upgrade to
Version 2.0 of Kyan Pascal (including a completely new manual) for only $20.00 ($10.00
if you have purchased Kyan Pascal after 12/1/85, and no charge if you purchased it
after 1/1/86). We are also offering a 15 percent discount on the Toolkits and Macro
Assembler/Linker.

We hope to continue bringing you an expanding line of new programming software.
We truly appreciate your support and welcome your comments and suggestions.
gver{rone st Kyaa Software extends to you our Best Wishes for & happy and prosperous

ow Year.

Sincerely,

ThomasE.Eckmann
President
Kyan Software, Inc.

kyan software 1850 union street #183 san francisco, california 94123 (415) 775-2923

UPDATE KYAN!

Kyan Software, Inc. Volume | Number 2
1850 Union Street, #183 (c) 1986 Kyan Software Inc.
San Prancisco, CA. 94123 January/February Issue

APPLE EDITION
WHAT'S NEW

Kyan Software, Inc. has three great new toolkits for you: a Pregrammiag Utility
Teelkit, an Advanced Graphics Toolkit, and a MouseToxt Toeolkit. In addition
we are introducing s new Macre Assembler/Linker. Each of these products is
described in the following section.

p ing Utility ToolKi

The Programming Utility Teelkit gives you a large library of file management and
programming utility routines. The Toolkit includes utilities which allow you to access
the disk from within programs and routines which make it easier to convert UCSD and
Turbo-Pascal programs into ProD0S-based Kyan Pascal programs. In addition, the
Toolkit features an advanced random number generator, Turtle graphics, sound
routines, screen and cursor control routines, quick sort routines, ASCII character to
aumeric conversion routines, and more. The Programming Utility Toelkit
routines are easy to use. Simply "include” them in your Pascal source code. The Kyan
Psscal compiler does the rest.

The Programming Utility Toolkit will run on any Apple 1I with 64K of memory and any
version of Kyan Pascal for the Apple II.

Ad { Graphics ToolKit

The Advanced Graphics Toolkit lets you add stunning hi-res and double hi-res
graphics to your Kyan Pascal programs. It contains a complete set of graphics
primitives which allow the user to develop custom graphics. It also containsan
extensive library of standard graphics routines and procedures. With the Advanced
Graphics Toolkit, even novice Pascal programmers can create programs with a
sophisticated user interface and exotic graphics displays.

The graphics primitives are a set of fundamental procedures which are used to create
graphic displays. The primitives include line and text drawing, device information,
and initialization commands necessary to create custom graphics. Graphics are created
by calling the primitive commands and specifying desired parameters (e.g., line
fength, start/finish point, etc.). By developing and saving custom graphics,
programmers can build personal libraries of graphics routines.

The Advanced Graphics Toolkit aliso featuresa library of Pascal and assembly
language source code routines which can be called to perform "standard” graphics
functions. These "standard” routines, however, are far from commonplace. For
example, with the Advanced Graphics Toolkit, you can create a two or three
dimensional object; draw a parallel or perspective projection of this object; and then,
scale, rotate, or translate the object into different forms. The Toolkit library also
contains windowing and clipping routines which allow you to select and enlarge
portions of a drawing (windows) and "clip” away the rest. Finally, the library includes
routines for hidden surface and line removal, shading, and the genertion of curves.

The Advaaced Graphics Toolkit requiresan Apple IIc or Ile (with extended 80
column card) and Version 2.0 of Kyan Pascal.

MouseText Toolkit

The MouseText Toolkit lets you add a Macintosh-like user interface to your Kyan
Pascal programs. Pull-down menus, windows, and mouse-controlled cursor movements
can be integrated in your Apple I programs with ease. Now, you can take full
Ra%;{a)nuge of the capabilities of the Apple IIc and Apple Ile (with updated character

The MouseText Toolkit consists of software routines for mouse-operated menus and
text windows. The routines utilize the MouseText icons stored in ROM on the Apple IIc
and updated Ile and support such functions as: cursor selection and display, menu bar
displays, and menu item selection; window selection and display, window dragging and
size changing, and writing text in windows; and scroiling through documents.

With Kyan's MouseText Toolkit, you can write Apple Il programs which havea
desktop environment. Windows are used to represent documents on the desktop. With
Toolkit routines, you can open and close windows, move windows around, and reduce or
enlarge windows. You can also write programs which are event-driven (i.e., they
respond to mouse, keyboard, update, or application events).

The MouseText Toolkit makes it easy for even novice Pascal programmers to create
software with state-of-the-art features. It requires an Apple Ilc or Apple Ile (with
updated character ROM and extended 80 column card) and Version 2.0 of Kyan Pascal.

Page 2

Kyan Macro Assembler/Linker

The Kyan Macro Assembler/Linker isa powerful ProD0S-based programming tool
which allows you to create assembly language programs that can run on any Apple II.
It features a full-screen text editor, 6502 macro assembler, object module linker, and
Kyan'sunique KIX'® operating environment. With the Kyaa Macro
Assembler/Linker, assembly language programming has never been easier!

The Kyan Macro Assembler/Linker includes:
o An extremely fast object module linker;

o Kyan's full-screen text editor with support for 40 and 80 column screens,
upper and lower case letters, and a full range of text editing functions;

o A 6502 macro assembler which produces relocatable binary files
optimized for speed. The assembler supports 65C02 opcodes, local
variables, identifiers up to 255 characters in length, calls from BASIC,

and a full library of error messages. It also supports cross-referencing
of variable names; ’

o The KIX'R operating environment which features a UNIX-like command

structure for ease of use. With KIXt®, programmers can call
directories, alter files, and execute a wide range of other file managment
commands directly from the system prompt. Forget the ProDOS Filer;
now the Apple has a real operating system!

The Kyan Macro Assembler/Linker isnot copy-protected and includes a complete

reference manual. It will run on any Apple II with 64K of memory and a single disk
drive. It is fully compatible with all of Kyan's Pascal toolkits.

Pri | Availabili

These new products are scheduled to be available on February 1, 1986 (Please forgive us
if we are a week or two late).

Each package will be offered to registered owners of Kyan Pascal at a reduced price.

Suggested Special
Programming Utility Toolkit 49.95 2.9
Advanced Graphics Toolkit 49.95 Q95
MouseText Toolkit 4995 4295
All 3 Toolkits 14985 128 85
Kyan Macro Assembler/Linker 69.95 59.95

Plus shipping .
* Special Offer Price expires April 1, 1985.

Page 3

Page 4
KYAN PASCAL UPDATE

KYAN PASCAL -- YERSION 2.0

Version 2.0 of Kyan Pascal is a complete rewrite of the Pascal compiler and
assembler. Many new features and capabilities have been added to make Kyan Pascal a
full-featured software development system. In Version 2.0 we have incorporated many
of the suggestions received from current users and have added a range of
enhancements developed by the Kyan staff.

One of the most significant changes in Version 2.0 is a completely new users
manual. This manual has an expanded tutorial section, comprehensive Pascal
reference section, and several new sections on Pascal and assembly language
programming. The manual is bound in a 3 ring binder for ease of use and convenient
updates. Changes in the software include:

o Full compatibility with the 1SO standard for Pascal. Version 2.0 has
successfully compiled and assembled the Pascal test suite used by the Federal Software
Testing Center to validate and certify Pascal compilers.

o Improved error handling. Version 2.0 includes an expanded list of
compiler, assembier and runtime error messages.

o Intermediate assembly language files. Version 2.0 lets you
capture the assembly language output of the Pascal compiler as a text file. You can
then edit or modify this file prior to assembling.

o New procedures: Page, Close, Pack and Unpack.
o New data type: String
o New Library Functions: KEYPRESS, GETCHR, GOTOXY ,RANDOM

Last, but far from least, is Kyan Software's new operating environment called

KIXtm EIXt| features a UNIX-like command structure which allows you to: execute
file management commands; list and edit directories; dump screens to a printer; and,
perform dozens of other functions; all from a command line prompt. The limitations

and inconvenience of the ProDOS Filer are now history. With KIXt® and Version 2.0,
you'll think you are programming on a million dollar mainframe!

Pri { Availabili

In keeping with Kyan's policy of low cost upgrades, Version 2.0 is available to
all registered owners of Kyan Pascal (Version 1.-) for only $20.00 ($10.00 if you
purchased after December 1, 1985, and no charge if you purchased after January |,
1986) plus freight. This price includes both the new software and manual. To be
eligible for the upgrade, you must complete the enclosed form and mail it to Kyan
Software with your payment and Kyan Pascal source disk. We wiil begin shipments of
upgrades in the middle of February.

A | Pascal ing: The Chain f

By using the "Chain" feature in Pascal programs, the programmer can call and run
compiled programs from within an original program. Variables can also be passed
from the original to the chained program.

To use the chain feature, first compile both the original and the chained program.
Then, when the computer reaches the statement Chain (‘FILENAME.O') in the
original program, the computer will pass control to the first statement in the chained
program. Essentially, chaining is telling the computer to RUN the specified object
program.

Variables used in the first program may be lost vhen the second program is called.
To saved the variables, they must be passed from your original program to the chained
program. Todo this, the variables must be: declared in the second program inthe
same order as they were in the original program; and, they must be of the same type.
The example programs below demonstrate the method of passing parameters between
programs.

First (original) program:
PROGRAM Retail (Input, OQutput);
TYPE
String=ARRAY(1.64] OF Char;
VAR
ProductName: String;
Price: Real;
BEGIN
WRITELN(CHR(12));
WRITELN('Retail salesperson, what is the name');
WRITE ('of the product you sold?');
READLN(ProductName);
WRITELN('And what is the price, in dollars’);
WRITELN('and cents, that you sold the');
WRITE (ProductName, for?-->$');
READLN(Price);
CHAINC('/DIR/PROFIT.O")
END.

Second (chained) program:
PROGRAM FindProfit(Input,Output);
TYPE
String: ARRAY(1.64) OF Char;
VAR
ProductName: String;
Price, Cost, Profit: Real;

BEGIN
WRITELN(CHR(12));
WRITELN('>You have chained to the second program<');
WRITELN('What was our cost of the' ProductName'):
WRITELN('that you sold?-->');
READLN(Cost);
WRITELN('Okay, salesperson, you sold a');
WRITELN(ProductName, for $' Price4:2):
WRITELNC('It cost us $',Cost:4:2," so we');
Profit:=Price-Cost;
WRITELN('Made a profit of $',Profit:4:2)
END.

Page S

How the two programs work.

The first program, "Retail,” assumes that the user is a retail salesperson who has
just sold a product to a customer at a specific price. The computer asks the salesperson
for the product’'s name and the price at which it was sold. When he responds, the
computer runs the second program (via Chain), called FindProfit. The product name
and price are passed to FindProfit. The program then asks for the cost of the product
(which should be less than the price it was sold for). The program then givesa
rundown of past events and computes the profit (with the formula Prefit:=Price-
Cost). Finally, it shows the profit made.

Poi ber about chaining:

Fhen chaining.
o The filename must specify the object code file (must have the .0 extension unless
it was renamed.
o No statements after the Chain statement will be executed (unless the second
program chains back to the first under special conditions).

Wben passing paramelers.
o The variables must be declared in the same order in both programs.
o The data type of the variables must remain the same.

How Kyan Pascal uses these passed parameters.
o Variables are stored starting at high memory and grow towards low memory.
o Variables are stored on the stack.

The Kyan Text Editor
Many people have written to us regarding the Kyan text editor. Perhaps a little

background would help you understand the philosophy behind our editor and why
you have a choice in the type of editor you use with Kyan Pascal.

First, let's define what we mean by the term text editor. Text editors are simply word
processing programs. In Kyan Pascal aa editor is used to enter Pascal source code
into the computer and to create ASCII text files which can be read by the Pascal
compiler.

Text editors are undoubtedly the most popular and widely-used class of software for
the personal computer. There are many different editors available, and you have a
wide selection to choose from. Everyone has a favorite editor which they believe to
be the "best” one available. If I had to guess which is your favorite, I would say it's
the one you first used when you were learning to use your computer. It's human
nature -- people generally like the things they know best.

Page 7
In the early stages of development of Kyan Pascal, there was a great deal of debate over a8
the design of the text editor. One school of thought was that we should not have any
text editor at all. Since our compiler can read any sequential ASCII file, it was argued
that we should let users supply their own text editor for writing Pascal source code.
The other school of thought was to supply a text editor which was adequate for writing
and editing Pascal source code, but which did not include the bells and whistles found
in stand-alone editors.

This second school of thought prevailed. We decided to include an editor which was
modeled after those found on mainframe computers. This would allow students just
learning the Pascal language to more easily make the transition from their micros to
mainframe computers found at most schools.

The Kyan editor is modeled after Wordstar. The control key command structure of the
editor is widely used on larger computers and with the professional leve! language
compilers. If you know and like Wordstar, you probably like the Kyaa editor. If you
don't, then you may object to it. Regardless of which camp you are in, just remember
one thing the Kyan Pascal compiler is compatible with any text
editor which generates sequential ASCII files.

One way to work with Kyan Pascal is to write your source code program using your

favorite word processing software. Then, reset the computer, load the Kyan Pascal
compiler, and compile your program. The Kyan editor can then be used for simple

edits of your program.

My favorite way to write Kyan Pascal programs is to use the word processor in
Appleworks to write my programs. [then compile the program with Kyan Pascal.
When the compiler lists my errors, [use the Kyan editor to do the quick patch jobs. It
works wonderfully!

PASCAL PROGRAMMING

Several users have submitted utility programs to Update... Kyan, which we would like
to pass on to you. We can’t guarantee that these programs are useful in your
application; but you may want to examine and experiment with them.

Useful Routines

The Jensen/Wirth Standard for Pascal does not include cursor controls and other

procedures many users may want. Calvin Glomb sent us a whole set of procedures for
use in the 80 column mode, which he says are derived mostly from Apple's 80-Colump
Text Card Magual These routines should help a lot of people. (Does anyone out there

have simifar routines for the 40 column mode? They, too, would be greatly
appreciated).

'\\BEEP produces a 1000 Hz tone for 0.1 seconds.

procedure beep;
begin
write(chr(7));
end; '

LEFT moves the cursor left one character.

DOWN

CLREOS

CLEAR

l NORMAL

\LINVERSE

SCROLLDOWN

procedure left;
begin

write(chr(8));
end;

moves the cursor down one character.

procedure down;
begin

write(chr(10));
end;

clears the screen from the cursor to the end of the screen.

procedure clreos;
begin

write(chr(11));
end;

clears the entire screen.

procedure clear;
begin

write(chr(12));
end;

sets the cursor format to normal.

procedure normal;
begin

write(chr(14));
end;

sets the cursor format to inverse.

procedure nverse;
begin

write(chrl5));
end;

scrolls the display down one line and leaves the cursor in the

current position. :

procedure scrolldown;
begin

write(chr(22));
end;

@cuu,m

RIGHT
).CLREOL
UP

GOTOXY

returns the cursor to the upper left corner of the screen.

procedure home;
begin
write(chr(25));
end;

clears the line the cursor ison.

procedure clrfiin;
begin

write(chr(26));
end;

moves the cursor to the right one character,

procedure right;
begin

write(chr(28));
end;

clears the line from the current cursor position.

procedure clreol;
begin

write(chr(29));
end;

moves the cursor up one character.

procedure up;
begin

write(chr(31));
end;

moves the cursor to the position on the screen specified by
COL and ROW, with COL having a range 0 - 70 and ROW having

arange0-23

procedure gotoxy(col.,row: integer);
var

go: integer;
begin

home;

go:=0;

while col > go do begin

right;

Page 9

goi=go + 1. .Page 10

end;
g0:=0;
while row > go do begin
down;
go:=go+ I;
end
end.

PAUSE will cause a delay of a time period equal to the variable time.
This period is not specified but one second is about equal to
1000.

procedure pause(time: integer);
var
loop: integer;
begin
for loop:= 1 to time do
end;

W.P. Hudson, of Corpus Christi, has also sent us another version of these functions, as
well as some extra goodies like FLASH.

Procedure CLRSCRN; (* Clears screen like BASIC 'HOME' *)
Begin
*a

JSR $FCS8

end;

1\ Procedure INVERSE, (* Sets cursor format to inverse mode *)
var
focatel: “integer;
Begin
assign(locatel,50);
focatel :=63
end;

var
locateN: "integer;

Begin
assign(locateN,50);
locateN":= 255

end;

)(Procedure NORMAL; (* Sets cursor format to normal mode *)

var normal modes *)
locateF: “integer;

Begin
assign(locateF, 50):

)(Procedure FLASH: (* Flashes cursor between inverse and

locateF" := 127
end;

Procedure VTAB(locv:integer);

var
locatev: “integer;
Begin
assign(locatev,37);
locatev”:= locv;
Begin

*a
JSR $FC22
end
end;

Procedure HTAB(loch: integer);

var
locateh: “integer;
Begin
assign(locateh,36);
locateh”:=loch
end;

Procedure LOCATE(locv loch: integer);

var
locatev, locateh: “integer;
Begin
assign(locatev,37),
focatev:=locv;
begin
*a
JSR $FC22
»
end;
assign(locateh,36):
locateh:= loch;
end;

(* Moves cursor to position X *)

(* Moves cursor down to line Y *)

(* Moves cursor to
position XY *)

As Mr. Hudson observes, Procedure LOCATE is similar to the assembly language
"GOTOXY" routine version in the last issue of Update Kyan.

Page 11

Print P ith Line Numb

Erik Warren has

developed a program that will permit you to add line numberstoa

print out of your source code listing. Line numbers can be useful when debugging a

program.

end;
write
pr(0)
end.

Program Print(Input,Output)

Var
f: text;
s: array (1..64] of char;
n, X integer;

¢: char;

*ipri

Begin

X =0;

n=l;

write('Pathname? ');
readin(s);

write('Line numbers (y/n)? '),
readin(c);

reset(f.s);

pr(1); (* printer slot *)

while not eof(f) do
begin
if (c='y') and (x=0) then
begin
x=1;
if n <10 then write ('000',a, °);
if (n>9)and (n < 100) then write ('00',n, °);
if (n >99) and (n < 1000) then write ('0'.n, ');
if n >999 then write (n,” '),
end; (* ifcandx *)
if eoln(f) then
begin
x:=0;
n=n+1
writeln;
end (* ifeoln *)
else
write(f");
get (f)
(* while *)
In;
(* screen *)

Page 12

ASSEMBLY LANGUAGE PROGRAMMING

Some Useful Utiliti

Keith Symon of M
these procedures u
Update

in the Pascal Programming section.

adison, Wisconsin sent us some useful utilities. He notes that some of
se peek(loc) and poke (loc.val) from the first issue of
....Xyan. Some of these procedures perform the same functions as procedures

Note: All assembly Isngusge source codes must be in upper-case letters.

Procedure CALL(loc: integer);

Begin

ot
LDY #3
LDA(SP) .Y
STAADD+ 1
INY
LDA(SP),Y
STAADD - 2

:loc

(* Jump to specified memory location*®)

.ﬁDD JSR $BESE ;called location

End;

Procedure HOME;
Begin

CALL(-936)
End;

Procedure HTAB(I: integer);

Begin
POKE(36.1)
End;

Procedure VTAB(I: integer);
_ Begin

POKE(37.1);
#3

JSR $FC22; VTABset
E]
End;
Procedure CLEARLINE:
Begin

CALL(-868)
End;

(*Moves cursor to upper left-hand corner®)

(*Moves cursor to specified horizontal
position*®)

(*Moves cursor to specified vertical
position*)

(*Clears line*)

Page 13

Page 14

Procedure GETCHAR(Var ch:char); (* like GET in BASIC *)

Begin
*#a
LDY #3 ;get ch character
LDA(SP) .Y
STAT
INY
LDA(SP).Y
STAT- 1
JSR $FDOC .rdkey
AND *$7F ;remove hi bit
LDY *0
STA(T),Y
JSR SFDED ;cout
E 4
End;
Procedure SOFTGHT; (* switch to hires, do not clear screen *)
Begin
#a
LDA $C053
LDA $C054
LDA $C057
LDA $C050
.
End;
W‘M i .

We frequently get calls from programmers whose latest creation keeps crashing. The
culprit is frequently found to be the X register. The 6502 X register is used by the
compiler as a stack pointer. /f you use the X register in your own assembly
language routine, you gyst save and restore it.

UPDATE ... KYAN

Kyan Software Inc. March/April Issue
1850 Union Street #183 Volume 1, Number 3
San Francisco, CA 94123 (c) 1986 Kyan Software Inc.

Apple Edition
(Editor: Sonja Newell)

WHAT'S NEW?
INTRODUCING ... KIXT™

KIX is a powerful UNIX-like operating shell which works with ProDOS to give the programmer direct
access to and full control over all files, volumes and directories in the system. KIX eliminates the need
for the Filer. It provides you with a broader range of disk management capabilities and is much easier
to use because you don't need to wade through a long series of menus. Anytime the system prompt
is present, you can call and execute a KIX command. KIX consists of more than 25 commands that let
you find, move, copy, compare, and manipulate files and directories on your disks.

To give you a better idea of why we are so excited about this new development, we'd like to briefly
describe the six groups of KIX commands.

Dir ntrol .
ProDOS stores files in volume directories and subdirectories. With KIX you have four simple
commands which allow you to print, create, change or delete these directories.

i ir nd Fil n

With three simple commands, KIX allows you to list, print and/or concatenate files and directories.
Each command has a series of options which let you specify exactly what information you want listed.
For example, you can print a simple listing of disk directories which tells you only the name for each file
or directory and the number of blocks free, or, you can print a complete listing which displays the
length, protection status, file type, starting address and other important file information.

nipulating Fil ir ri Volum
The six commands in this category allow you to copy, move, delete, or change the protection status of

files and directories. They also allow you to format and copy new volumes (including the new 3.5
Unidisk).

Comparing Files and Volumes

The two commands in this category allow you to compare files and volumes to determine if they
match. If two volumes do not match, the block and byte location of the first difference will be reported.
If two text files do not match, the lines containing the differences will be printed.

Searching Files and Directories

One command searches all volumes and directories for a specified file (i.e., "I put that file in a
subdirectory which made sense at the time, but now, ..."). Another command allows you search text
files for a string of characters (e.g., find all the text files which contain a reference to Kyan Software).

nd Display Attri

This category contains nine utility commands which allow you to perform such activities as setting the
system time and date, switching to/from 40 or 80 column mode, dumping the contents of the screen
to the printer, and more.

KIX also supports the use of wildcards. They can be used with various KIX commands to further
expand the power and flexibility of the KIX system.

KIX is included in Version 2.0 of Kyan Pascal and the Kyan Macro Assembler. It will also be
available soon as a stand-alone product which will work within the framework of AppleWorks and other
popular Apple Il software. Many of the'KIX commands are available to Kyan programmers who use the
Programming Utility Toolkit. The Toolkit procedures allow you to write disk management routines into
your own programs and applications software.

NEW DEVELOPMENTS IN APPLE Il HARDWARE

The 65C816 is a powerful new microprocessor developed by the Westem Design Center. The
engineers involved in the design of the new processor were also involved in the original development
of the 6502 processor.

The 65C816 has been in development fot several years and was rumored to be the processor around
which Steve Wosniak was designing the mysterious and ill-fated Apple lIX. The chip was delayed in
development and apparently contributed to the demise of this product at Apple. The chip has now
been debugged and manufacturing rights have been licensed to several companies.

The 65C816 microprocessor has the advantage of operating in three different modes: (1) 6502
emulation mode which allows you to run all existing Apple Il software; (2) an accelerated 6502 mode
which allows you to run some Apple Il software at a faster clock rate; and, (3) a true 16-bit mode which
can run a new generation of software at speeds of 3 mHz or more. This processor can also directly
address more than one megabyte of memory (versus 64K for the 6502). The capabilities offered by
this new processor hold out the promise of a whole new generation of high performance Apple |l
hardware and software.

The first commercial application of this processor is an Apple |l add-on board manufactured by
Checkmate Technologies of Tempe Arizona. Checkmate is marketing the board as a plug-in adjunct
to its RAM expansion boards. Since the Checkmate board is a plug-in device which uses the standard
Apple /O, it runs at a clockrate of only 1 mHz (in all modes). However, the Checkmate board offers
hobbyists and professional developers a first opportunity to play around with this exciting new
processor and explore the new opportunites which it affords for a new generation of Apple Il software.
(Note: As of this date, a disk operating system is still not available to support true 16 bit operation of
the processor. Checkmate expects to have one available very soon, but for now, users are limited to
running the chip in 6502 emulation mode using ProDOS).

(Next Issue: RAM cards and Static RAM with 10 year battery backup!)

Update ... Kyan MarctvApril Issue Page-2

KYAN PASCAL UPDATE

INTRODUCTION TO HIGH LEVEL LANGUAGES
by the Kyan Staft

With this issue of Update...Kyan, we are beginning a series of articles which describe the origins
and evolution of the Pascal programming language. This series starts with an overview of
programming languages in general and where Pascal fits in. In the next issue, we will discuss
computer hardware and how it works with the software you write. Subsequent issues will talk about
software engineering, debugging and other topics of general interest.

If you have a particular topic you would like discussed in this column, please let us know. We are
writing this column for you and we would like to hear from you.

Rather than re-invent the wheel, we will use, when appropriate, excerpts from popular books or
periodicals. This month, we have an excerpt from the book “Qh! Pascall”, by Doug Cooper and
Michael Clancy (second edition; W. W. Morton, New York, NY 1985) This is one of the best textbooks
available for Pascal programming. The authors have a wonderful writing style, and we highly
recommend it.

"There's and old story about an untutored bumpkin who listened to some students as they talked
about the stars. Although the concepts they discussed were strange and new, he feit he could
understand how astronomers used telescopes to measure the distance from the earth to the celestial
bodies. It even seemed reasonable that they could predict the stars' relative positions and motions.
What totally puzzled him, though, was how the devil they were able to find the stars’ names.

"People sometimes approach programming languages in the same way .- as though they're
complicated mathematical codes that the first computer scientists were lucky enough to break. Well,
they are ciphers of a sort, but they're not so hard to crack. Let's look at the three basic kinds of
programming languages -~ low-level machine languages, intermediate assembly languages, and
finally, high-level languages like Pascal.

*The most basic programming codes belong to an instruction set. These are the computer's built-in
commands, and they aren't much more sophisticated than the operations we can punch into a
programmable hand calculator. There are instructions for doing simple arithmetic, of course, and for
saving answers and values as we go along. There are usually a variety of instructions available for
comparing values, and for deciding what to do next. A special set of instructions store and retrieve
things from the computer's memory. The fanciest instructions usually deal with getting more
instructions.

“A machine language -- the simplest programming code -- is defined by numbering the basic
instructions. When we do this, each instruction's number becomes its code name. If we use eight-
digit binary values for numbering (as computers often do), we can name 256 different instructions,
starting with 00000000 and ending with 11111111, A machine language program is nothing but a
long series of eight digit numbers.

"Machine language programming is easy, but it's incredibly tedious. Fortunately, one of the earliest
programmers had a bright idea. Why not write a machine language program that could recognize short
sequences of English letters, and would automatically translate the English into the proper machine
language instructions? Why not, indeed! Such programs were called assemblers; they understood
assembly language, and were soon found on every computer.

*Assembly language programming is a bit more palatable. An assembly language programis a
sequence of two-to-four-letter assembly language commands, often accompanied by an additional
shorthand that identifies locations in the computer's memory. For instance, the assembly command

Update ... Kyan March/April Issue Page -3

ADD R2,R4 means 'add the contents of memory location R2 to memory location R4, and save the
sumin R4.' It isn't hard to imagine carrying out the same kind of command on any hand calculator that
has a built-in memory.

"Although assembly language was a convenience, it hardly exhausted the limits of human ingenuity.
Why be limited to three-letter words? Programmers wanted to express themselves in relatively
English sentences, rather than in the computer-oriented terms of machine and assembly languages.
In response, research teams did the obvious. They repeated the same step that had led to
assemblers, and wrote more complicated programs, called interpreters and compilers. The new
programs translated increasingly sophisticated sequences of letters into a form the computer could
understand. The letters, and the words they formed, were called high-level languages.

"High-level languages, like FORTRAN, BASIC, and Pascal, are consciously designed to help solve
problems. In contrast, low-level machine and assembly languages, were expressly intended to
operate computers. Programers who use high-level languages don't have to worry about getting
instructions, or keeping track of numbered memory locations. Instead, they give commands in a
language that usually resembles a terse English. A typical high-level language's program consists of
phrases that are liable to be found in the statement of a solution — if a condition is met then we take an
action or else do something different.

"Many programming languages have been designed in response to different problem-solving
requirements. Just as there are several types of hand calculators (stdistical, business, scientific), there
are also job-specific computer languages. You can write most programs using any language, in the
same way that you could use a financial calculator to solve a statistics problem. However, it makes
shense to use the most appropriate tool. We can discover the original purpose of some languages from
their names:

FORTRAN: FORmula TRANSslator is one of the earliest and most widespread
languages. It's intended mainly for scientific applications.

COBOL: COmmon Business Oriented Language was developed as a standard for
business computing. Many COBOL instructions are designed specifically for payroll
or accounting applications. .

BASIC: Beginners All-purpose Symbolic Instruction Code is a simple language
that's used to teach basic computer applications. Although it's easy to learn, BASIC
doesn't go very far. It's a poor basis for understanding programming, and is no longer
widely taught in college level programming courses.

LISP: LISt Processing language is widely used in programs that involve processing
of symbols, from mathematical symbols to the symbols that form natural (spoken)
languages. It's one of the main languages used in artificial intelligence research.

*Pascal was named after the 17th century mathematician and religious zealot Blaise Pascal. Since it's
not an acronym (it doesn't stand for anything) only the first letter is capitalized. Pascal was created with
two main goals:

1. To provide a teaching language that would bring out concepts common to all
languages, while avoiding inconsistencies and unnecessary detail.

2. To define a truly standard language that would be cheap and easy to implement
on any computer.

“In a sense, Pascal is a lingua franca, or common tongue, of programming. It's easy to leamn, and
provides an excellent foundation for learning other languages. We've found that people who know
Pascal can master BASIC in an aftemoon, and pick up FORTRAN in a week or two.

Update ... Kyan March/April Issue Page -4

*But what does Pascal look like? Niklaus Wirth, the Swiss professor who designed the language,
intended that Pascal be clear, readable, and unambiguous as possible. Reserved words are the bare
bones Pascal language. Clearly, Pascal isn't written in binary code. In fact, we're reminded of the
famous ad:

If u cn rd ths ad, u cn gt a gd jb--Leam Speedwriting!

"One of Pascal’s big advantages over some earlier languages is that it lets us write a program using
almost exactly the same terms we used to state the original problem’s solution. Some day soon we
expect to be seeing this sign in the subways:

if YouCanReadThis then
begin
StartWork(Soon);
Earn(BigBucks)
end;

"ls Pascal the ultimate programming language? No. An eventual successor to Pascal may be Modula-
2, which was also developed by Wirth. Don't worry that you're studying the wrong language, though,
because the first term’'s worth of Modula-2 is almost exactly like Pascal. Modula-2 contains some
additional features that make it attractive for later programming courses, particularly those that involve
writing large programs that translate languages (the compiler course) or control computers (the
operating systems course). Within a few years, Modula-2 may become a language widely used for
undergraduate coursework.

"Another potential Pascal successor, the Ada programming language, was commissioned by the U.S.
Department of Defense. The DoD hoped to create a language that would be more reliable for the
control of weapons systems, as well as less expensive to program in, than FORTRAN and the others.
At the time of this writing it is not clear that either goal has been met, nor that the language will be
widely used outside of defense contractors' programming shops.”

BENEERNRA A AN AN RRE R DR R AR RN AR RSN R ERRARA AR AR AN SRR R B ANEN A AAAN AN AR RO SN E RN R AN AN AN NN N RN A AN AT AN

Thank you, Professors Cooper and Clancy! The preceding text is an excerpt from their textbook
"Qh! Pascal!”. Inthe nextissue of Update ... Kyan, we w{ll look at how computers use

software.

ASSEMBLY LANGUAGE PROGRAMMING

PROGRAMMING IN 6502 MACHINE LANGUAGE
by John R. Fachini

This is the first installment in a series of articles conceming machine language programming in the
Kyan Pascal environment. We'll start out by using simple examples to clarify the 6502/Kyan Pascal
stack interface, 6502 instructions, addressing modes, programming techniques, and allow those
people who are just starting to learn machine language to catch up between now and the next issue of
the newsletter.

If you are debating whether or not to leam machine code, please do. You'll be amazed at how simple it
is, how quickly you catch on, and how much more power you will be able to add to your programs with
very little effort.

Now that you've decided to expand your programming knowledge to include 6502 machine code,
you need to find a good book which will fill in the most elementary aspects of machine language
programming and act as a companion to this series of articles. | suggest Programming the 6502 by

Update ... Kyan March/April Issue Page-5

Rodney Zaks, published by Sybex. This suggestion is based on personal experience (I'm not on
commission from Sybex).

The actual progression of these articles is not definite; a lot of the information covered in future
columns will be determined by you - the readers. We'll do our best to cover the most requested
topics. Just put them down on paper and let Kyan know.

Onto to the business at hand...

The Apple // Series of computers is run by a 6502 microprocessor. The microprocessor controls all
displays, devices, and memory usage by following the instructions it finds as it executes a program.
Since the microprocessor is very fast (it's program instructions take between 2 and 6 thousandths of a
second each to execute, depending on the instruction), the Apple runs programs written in machine
code much faster than any other language. In fact, Kyan Pascal is the fastest Pascal available for
Apple computers because the Kyan Compiler/Assembler converts your Pascal program into machine
language and the 6502 can then execute the instructions directly.

Memory is made up of bytes. A byte consists of 8 bits. A byte can also be broken into 2 nibbles (4 bits
per nibble). The following diagram illustrates this structure:

nibble nibble 2 NIBBLES

7]161514]|3[2|1}6 g8 BITS

Figure 1.1

Update ... Kyan March/April Issue Page-6

Since bytes are made up of binary digits - bits - and bits are "logical” digits (value O or 1), it is easy to
calculate the value range of a single byte. There are 8, base-2 "columns”, so the individual bits have
values:

bt: 7 6 5§ 4 3 2 1 0

value: 128 64 32 16 8 4 2 1
Notice the "leftmost" bit has the highest value, i.e. 2 to the 7th power. Moving to the right, the value
of the individual bits decreases. This terminology may seem odd at first, but get used to it because
the concept of "least significant' and "most significant” will become important in the very near future.
Adding up the values listed results in the decimal number 255. This is the maximum value a single
byte can have. Decimal 255 is obviously too small a value to be of use in many cases, so the concept
of a 2 byte value (or "word") becomes important.
A word consists of 16 bits (2 bytes). The values in the Most Significant Byte of a word, bit by bit, are:

bit: 15 14 13 12 1 10 9 8

value: 32768 16384 8192 4096 2048 1024 512 256

Adding up all of the individual bit values in a word provides us with a much bigger number to work with:
65535.

The byte containing word bits 15 thru 8 is referred to as the"Most Significant Byte”, following the same
logic used in naming the most significant bit when working with a single byte.

The microprocessor uses "registers” in which data can be loaded, manipulated and stored again. The
Accumulator is a one byte register in which all math functions (addition, subtraction, and bit shifting)
must take piace. The other two registers, X and Y, are used mainly for “indexing” and temporary
storage of one-byte data.

We're moving pretty fast for the beginners out there (but that's why your supposed to buy a book,
right?) At this point | suggest reading the following sections in your 6502 machine-language book:

o REGISTERS

o SIGNED NUMBERS

o BCD (Binary Coded Decimal) NOTATION
o 16 BIT ADDITION and SUBTRACTION
o OVERFLOWS and CARRIES

With what you know now, you can still use the demonstration functions which follow. Just be sure to
read the above topics before you receive the next issue of the newsletter. I'll briefly summarize the
above topics in the next issue (honest). Be sure to read the remainder of the column - | promise you'll
learn something new, and you'll need the information later.

For the benefit of the more experienced programmers reading this column, I'll begin this section by
explaining the Pascal - Stack interface. If you are using version 1.2 or earlier of the Kyan Pascal
compiler/assembler, disregard this information (but get a copy of Version 2.0 - it's worth the
investment). If you're just starting out, read this section and save it for reference later on. We'll be
reviewing the stack format fairly often so that everyone understands the listings as they are
presented.

The Kyan Pascal Compiler/Assembler version 2.0 marks a great step forward in the Kyan Pascal
compiler's evolution. The new compiler generates more compact code, offers direct access to a
powerful assembler, 1SO (International Standards Organization) compatibility -- making it compatible

Update ... Kyan MarctvApril Issue Page-7

with most textbooks and Pascal code from other machines -- and an interface into a new, Unix-like
operating environment called KIXTM.

In order to completely understand the structure of the Kyan Pascal stack structure and environment, it
is necessary to first examine the algorithm invoived in variable allocation and different types of storage
formats.

As the compiler encounters variable declarations, it must allocate memory in which to store variables
during the execution of the Pascal program. Variables are allocated memory based on their types. For
the time being, we'll concern ourselves with INTEGERs, CHARs, and BOOLEANSs. (The other types
will be discussed in the next column).

INTEGERS get 2 bytes of storage, providing INTEGER variables a range value of -32768 to 32767 (or
0 to 65535 unsigned). INTEGERs are always stored so that the Least Significant Byte (LSB) is stored
one byte "lower” than the Most Significant Byte (MSB). Lower means that the LSB of an INTEGER
value is stored in a memory location one byte less than the location in which the INTEGER'S MSB is
saved. The example at the end of this section will clarify further. This convention is used for all 2 bytes
values.

CHARs and BOOLEANS are 1 byte variables. The byte which represents a CHAR is the ASCI! code
corresponding to that character. BOOLEANS are either zero or non-zero bytes, zero indicating a
FALSE boolean value.

Each procedure and function in the Pascal program must know exactly how the variables available to it
are stored. Thus the "stack” convention. Through the stack, a procedure or function can calculate
the position of any variable declared locally (a similar task is performed for references to Global
variables). We are concemed at this point only with the local stack area.

The calculation (or miscalculation) of variable positions on the local stack by programmers is the primary
cause of bugs in assembly language Toutines interfaced to Kyan Pascal programs. Most of these
bugs are easily avoided if a few steps are taken when developing 6502 routines for your programs.

Guidelines for Writing Assembly Lanauéqe Routines

1. Upon entry to your routine, be sure to save the value of the X register
and restore it before returning to Pascal.

2. Carefully map out the local stack before writing any code which references
values stored there.

3. Dont try to return to Pascal with an RTS, JSR or JMP. Always use
the # convention to allow the compiler to generate the correct return
machine code for you. If your code marks the end of a procedure or
function, be sure to end it with the # in column 1, followed by the "END;"
Pascal marker. The "END;" generates the return-from-procedure code
which the system must have in order to behave properly.

4, Use memory in zero page locations _T thru _T+15 only. Do not store
data in memory from $300 to $340 or on Bank 2 of MotherBoard RAM!
If you do so, KIX will not function properly. Also, the Version 2.0 Assembler
uses labels with an underscore () identifier. You should avoid using labels
which begin with an underscore in your own programs.

Update ... Kyan MarctvApril Issue Page-8

5. Any values you save while executing a 6502 routine which you want to
keep safe from the rest of the system must be saved in a data area you
allocate in your assembly language routine. Zero page _T thru _T+15is
not safe after Pascal regains control of the program.

6. The offset into the local stack for variable storage is now 5 bytes (the stack
offset in older versions was 3 bytes).

In order to reference the local variable stack, Pascal provides a pointer to the top of the local stack from
which to reference the values stored there. The assembler pre-defines this location as _SP. This
"pointer” is actually a pair of zero-page locations in which the address of the top-of-stack byte is

stored. Indexing can be done easily using the Y register (don't worry if you don't understand -- an
explanation is on the way).

It's actually much easier than it looks. The most complex part of the above guidelines is the mapping
of the local variable allocation. The following example should clarify it.

Assume you have declared:

FUNCTION EXAMPLE(firstoarm:INTEGER,; secondparm:BOOLEAN; lastparm:CHAR): INTEGER;
VAR firstlocal,secondlocal,lastlocal: INTEGER;

The local stack for FUNCTION EXAMPLE would then be:

Offset from _SP Stack Description
-] C b | Lexical level
1 {] LSB of old _SP
2 4 1 MSB of old _SP
3 L] LSB of caller
4 C] MSB of caller
3 L] LSBE of LASTLOCAL
6 {] MSB of LASTLOCAL
7 C] LSB of SECONDLOCAL
8 { 1 MSB of SECONDLOCAL
9 L] LSE of FIRSTLOCAL
19 L 1 MSB of FIRSTLOCAL
11 C] LSBE of EXAMPLE return value
12 C] MSB of EXAMPLE return value
13 [] CHAR of LASTPARM
14 L b BOOLEAN of SECONDPARM
) {9 [] LSB of FIRSTPARM
16 {] MSB of FIRSTPARM

Figure 1.2

Update ... Kyan MarchvApril Issue Page -9

The variable names are intended to provide a general way of mapping out the stack. The following
algorithm can be used to map the stack:

1. Count "down" to the byte at offset 5. This is the first stack
location of interest to you.

2. Allocate bytes, moving down thru the stack, for the LAST LOCAL
VARIABLE declared by the Pascal procedure/function.

3. Allocate the second-to-last variable, still moving more deeply
into the stack.

4. Repeat until you have allocated memory on the stack for the FIRST
LOCAL VARIABLE.

5. If the 6502 code is part of a PROCEDURE, skip to step 7.

6. If the 6502 code is part of a FUNCTION, allocate memory according

to the FUNCTION type (i.e., if the FUNCTION retumns an INTEGER,
allocate it 2 bytes, LSB first). Your 6502 code will put the
returned value in this memory.

7. Allocate stack space for the LAST PARAMETER in the parameter
list in the Procedure/Function header.

8. Allocate stack space, working to the left until you have provided
stack memory for the first parameter passed. The stack calcul-
ation is complete.

This algorithm may seem somewhat intimidating at first, but practice with it. After a few tries you'll see
how simple the procedure makes drawing out the stack maps. For practice, try mapping the
FUNCTION EXAMPLE above, then comparing it with the illustration.

After all this work, we'll exit with a pair of short routines. The first one retums the number of ProDOS
devices attached to your computer. The second returns TRUE if paddle button 0 or the open-apple
key is pressed.

FUNCTION DeviceCount: INTEGER;
{ Return number of active devices }

BEGIN
#A
LDY $BF31
INY
TYA
LDY #5
STA (_SP),Y; function value only at top of stack
INY
LDA #0 ;:MSB of integer is zero
STA (. SP)Y
#
END;

Update ... Kyan MarctvApril Issue Page-10

FUNCTION OpenApple:BOOLEAN;
{return TRUE if paddle button 0 or open-apple pressedy}

BEGIN
#A
CLC
LDA $CO061 :status location
AND #$80
ROL
ROL
LDY #5
STA (SP)Y
#
END;

That's all for now. If you're just beginning with assembly language, get to work on those books!
If you're more experienced, be patient. The next column will be a little more interesting, we'll cover
passing pointers, arrays, and call-by-reference parameters.

Remember ... you will determine the direction of this column. Please write and let us know what topics
you would like to see us cover.

PASCAL PROGRAMMING

We would like to pass on a letter we received from Avram Rudy Vener, an Update ... Kyan
subscriber. Mr. Vener's letter covered a number of different topics. The first of which relates to our
last issue where we discussed chaining in Kyan Pascal. He states:

My problem was that | needed large chunks of code to perform a variety of record and file
manipulations. This code could be written easily enough, but | could not compile all of it at one time
since | invariably (no pun) overflowed the symbol table. The chaining command as it now exists only
works in one direction and passes variables as described in the manual. | needed the different
modules not only to share variables but also to return to specific modules upon the completion of their
}asks, depending on user input as well as from which previous module the current one was chained
rom.

*The solution to these problems is relatively straightfoward. First, declare all TYPES in a single file.
This file can then be included in all your separately compiled modules so that all TYPES are ensured to
be identical. Second, define a set of SYSTEM variables. That is, variables which define the system
you are using. For example in my current application | have designed what can be considered a file
manager that permits certain users limited access to specific catagories of files. 1therefore defined a
record type called Currentuser which contains ALL the pertinent information about who is using the
system at the moment. Currentuser is the first variable declared in the main program’s VAR section in
every module. Other system variables are also declared in specific order including one special variable
called LINK.

Update ... Kyan Marchv/April Issue Page - 11

"LINK is a variable of type char. It is used to determine the module which chained the current module.
For example, one of my modules is a simple line editor. It can be called by any of seven other
modules. In each of those seven modules | have few lines of code which look like this:

Link:='E’;
chain('editor.o");

*The editor.0 module then permits the creation of a text file called 'temp’. Once the file has been
created and editing is complete the editor must then chain to the next file in the system. That is where
LINK comes in. In the editor module is a case structure as follows:

case LINK of
'E": chain('e.mail.0’);
'F': chain('feedback.o’);
'B": chain('bulletin.o’);

eﬁa; (*case®)

“Boolean switches and flags in system variables can be set to determine at what condition a module is
being entered. For example, one variable can be called FirstTime and can be set True from your
startup module. Once the module is entered it can be set false. This allows certain actions such as
printing a menu the first time a module is entered but only the prompt line on subsequent chains to
that module.

On another topic, one of the nicest things about Kyan Pascal is its ability to let the programmer use
inline assembly code. This is a truly marvelous feature which can facilitate certain tasks that would be
very cumbersome in Pascal. For example in one input routine, it would be desirable to mask out the
eighth bit in a data char. This is trivial using the inline assembler:

Procedure MyRead;

var
¢: char;
begin (* used to read from serial port, assumes IN#2 *)
read(c);
#a
LDY #3 ; Offset to C variable
LDA (SP),Y ; PutC data into accumulator
AND #3$7F ; Mask out eighth bit
STA (SP),Y ; Putit back into the C variable
#

.... (* continue with Pascal stuff *)
end;

Update ... Kyan March/April Issue Page - 12

You can switch back and forth between Pascal and assembly many times within a single procedure.
For example:

Procedure Foo;
begin
fori ;= 1 to MaxLength do
begin

(* check for a serial data *)

#a
LDA $COAS8 ; Get status flags
AND #8 ; Check bit number four
BEQ NOINP ; No input data yet

#
(* set indata flag onlyif there IS data *)

indata := true;

#a
NOINPEQU *

#

(* continue with Pascal stuff *)
;;’Id;

What happens is that the line: indata := true; is skipped if the AND test in the machine code results in
a zero. The trick in using inline assembly is knowing when to use it and how much. There are no hard
and fast rules, but in general | only use inline assembly to perform data manipulation on the byte or bit
level. | let Pascal handle floating point, but | might perform a lower case to upper case conversion
using inline code. .

Another place where inline assembly comes in useful is with the MLI. Kyan provided a PR routine. !
also needed an INP routine. It is listed below.

Procedure INP(slot:integer);

begin
#a }
SIXT ; Save the x Register, Kyan needs it later
LDY #3 ; Offset to SLOT variable
LDA (SP),Y ; put slot number (LSB) into a jump to set input routine
JSR $FESB ;
LDX T ; replace the X variable for Kyan
#
end;

Update ... Kyan March/April Issue Page - 13

LETTERS

" became very tired of using the Filer to delete my old compilations and free disk space, so | wrote a
routine that could do it from the prompt (PROGRAM KILL). Note that | handle my error codes codes by
simply printing out a generic message. Kyan's error routine drops me into the monitor, and, since |
never remember the exact spelling of my files, | spent a lot of time there!

... AVRAM RUDY VENER, Weston Connecticutt.

[Editor's Note: Sorry about that! Please try version 2.0 and KIX].

PROGRAM KILL (input,output);

const
maxpath = 65;
pe
pathtype = array[1..maxpath] of char;
var
¢: char
path : pathtype;
i: integer;
procedure destroy (var namebuf:pathtype);
begin
#a
DEST EQU *
LDA #01
STA P
LDY #3
LDA (SP)Y
STA P+
LDY #4
LDA (SP)Y
STA P+2
JSR ML
DB $C1
DB >P
DB <P
BCC DSTEND
#
writeln(' Error — Kill aborted 7;
#a
DSTEND EQU *
#
end; (* procedure destroy *)
begin
reset(input);
rewrite(output);
i=1;
writeln;

write(' Pathname? °);
while (not eoln) do
begin
i=i+1;
read(c);
path(il:= ¢
end; (*whilenot*)
path[1] == chr(i-1);
destroy(path);
end.

Update ... Kyan March/April Issue Page - 14

Mr. James Luther of Kansas City, Missouri has contributed the following assembly language routines
to the readers of Update ... Kyan. The routines all use the PEEK and POKE routines included in
Volume 1, Number 1 of this newsletter.

This function reads game controller buttons 0 thru 3 and returns TRUE if a button is pushed.
Function Button (Select:Integer): Boolean;
Begin
if (Select >= 0) and (Select <= 3)
Then
Case Select of
0:(*Button0 ")
If Peek (-16287) > 127
Then Button := True
Else Button := False;
1:("Button 1)
If Peek (-16286) > 127
Then Button := True
Else Button := False;
2:("Button2*)
If Peek (-16285) > 127
Then Button := True
Else Button := False;
3 : (* Button 3 is the cassette input *)
If Peek (-16288) > 127
Then Button := True
Else Button := False
End (*Case*®)
Else (* Select out of range *)
End Button := False; (* so make it false *)
nd;

This function checks to see if a key has been pressed and returns TRUE if it has. You can use a read
command to get the character.
Function Keypressed : Boolean;
Begin
if Peek (-16384) > 127
Then Keypressed := True
Else Keypressed := False;
End;

This procedure plays a musical note (0 through 51) for duration (0 through 255). Note 0 produces a
silent tone for the duration specified.
Procedure Note (Pitch, Duration : Integer);

Begin
If (Duration >= 0) and (Duration <= 255) and (Pitch >= 0) and (Pitch <= 51)
Then
#A
TXA
PHA ; saves X-register
' LDY #5
LDA (SP)Y ; get pitch
TAY
LDA NOTES)Y
STA T
' LDY #3

Update ... Kyan Marchv/April Issue Page - 15

LDA (SP)Y

STA T+1 : duration at T+1
. LDY #0 ; fast duration count
NT1 LDX T
CPX #3FF
BEQ NT4 ; branch if silent ($ff)
BIT $C030 ; whap the speaker
NTZ DEY : decrement fast count
BNE NT3 : if no borrow
DEC T+1 : decrement duration
BEQ NT5 : if finished
NT3 DEX . decrement pitch value
BNE NT2 ; pitch not done
BEQ NT1 ; pitch done, always taken
NT4 INX : trap X to $ff
BEQ NT2 ; always taken
NOTES DB 255 : pause

DB 232,219,207,195,184,174,164,155,146,138,130,123 ; oct#1
DB 116, 110, 103, 98, 92, 87, 82, 78, 73, €9, 65, 61 ;oct#2
DB 58, 55, 52, 49, 46, 44, 41, 39, 37, 35, 33, 31 ;0ct#3
DB 29, 27, 26, 24, 23, 22, 21, 19, 18, 17, 16, 15;0ct#4

D8 14, 13 . oct#5
NT5 PLA
TAX
#
End;

This function reads the game controller 0 to 3 and returns an integer 0 to 255.
Function Paddle (Select : Integer) : Integer;

Begin
Paddle = 0; (* make sure high byte is zero *)
If (Select >= 0) and (Select <= 3)
Then
#A
TXA
PHA ; save X-register
LDY #5
LDA (SP),Y
TAX ; X <- select
JSR $FB1E ; read the paddle X
TYA
LDY #3
STA (SP)Y ; save paddle
INY
LDA #0
STA (SP)Y
PLA
TAX ; restore X-register

#
Else Paddle = 255; (* out of range *)
End;

Update ... Kyan Marchv/Agpril Issue Page - 16

UPDATE ... KYAN

Kyan Software Inc. May/June Issue
1850 Union Street #183 Volume 1, Number 4
San Francisco, CA 94123 (c) 1986 Kyan Software Inc.

Apple Edition

(Editor: Sonja Newell)

WHAT'S NEW?

Telecommunications and Kyan

For those of you who have accounts on CompuServe, you should know that Kyan has an account, too. Our
PPN is 73225,450 and we can be found in a few forums on CIS (Sorry, but we don't loiter around CB!). The
most effective way of communicating with Kyan is via E-mail, not SIG messages; although forum messages
are a fine way of asking other users for help or offering suggestions. A few routines have been uploaded to
CompusServe forums by our users, and we would like to see more. We also may start uploading to the Data
Libraries ourselves. If you have a CIS account and you would like to communicate with other Kyan users on
CompuServe, send us E-mail and/or post messages in the forums. We will make your PPN identification
number available to other Kyan users and vice versa.

Users of MCI Mail can also send us E-mail to mailbox : 298-0892. Western Union EasyLink subscribers can
send telexes to: 989113 KYAN SFO

E-mail is an effective way of getting technical support from Kyan. Short listings and problem descriptions
can be E-mailed and may get a reply very quickly. We would like to reiterate our technical support policy:
We can help you with problems or possible bugs with any of Kyan's products, but we cannot write or debug
your programs for you. ‘

We would like to know how many of the Kyan users/programmers out there are using modems. If you have
a modem, please indicate so on the reader survey within this issue of Update...Kyan.

In addition to our CIS and MCI accounts, we are pondering the possibilty of a Kyan BBS (Bulletin Board
System). If you do not yet have a modem, this could be a good reason to get one! The BBS would most
likely be up sometime after we close the office here in San Francisco(after 5:00pm PDT). Messages could
be posted concerning technical support and programs, and newsletter routines could be up- and down-
loaded. ltis also possible for us to put updates on a BBS so users can update their software without having
to send their disks to us. If you would like to use a Kyan BBS please let us know. We are open to
suggestions and would very much like to hear your thoughts about this.

Software Submission Program

We would like to encourage readers to submit programs for publication in Update...Kyan. As incentive,
we will pay authors of Pascal or Assembly Language routines a reward of $50.00 for each routine published.
To be eligible, the routines must be creative and original. Also, the source code should be fully
commented. We are open to any and all sorts of programs; the following may give you some ideas.

0 Music/Sound routines

o Graphics/Text and Graphics routines

o Input/Qutput driver routines for accessing slots
o Unique data structures

Please try to keep your programs at a reasonable length. All routines accepted for publication in
Update...Kyan will become public domain software without any limitations regarding duplication or
distribution. Routines not accepted for publication will remain the exclusive property of the author.

Kyan Pascal Update

As we promised, we will now look at computer hardware and how it works with the software you write. The
following is a continuation of the last issue's article and is an excerpt from Oh! Pascal! by Doug Cooper
and Michael Clancy (second edition; W. W. Morton, New York, NY 1985) Once again we'd like to emphasize
what a fine text it has for leaming Pascal. Not only is it easy to follow but the authors don't get bogged down
in dry text.

ARRRRRNAAR R AR R AR R AN A AN A AR AN IR R AR R 2222 T2 22T T T eIy L322 2222227 (2222222222 ARV A AR AR AR SRR A SR NN A RN A O d

"It may be somewhat disconcerting to find that even though this text is devoted to the subject of computer
programming, computers themselves are almost never mentioned. In practice, programmers don't have to
know much about the internal workings of a computer, any more than typists need to understand the
mechanical underpinnings of an electric typewriter. But rather than succumb to this appeal for ignorance,
let's get an overview of what goes on behind the keyboard.

"By now everybody must know that computers are systems with two sides: hardware and software. Neither
is of much use without the other and the programs we'll learn to write depend on both." ... "Hardware
components include the computer, as well as machines that are connected to it: terminals, printers,
secondary memory, and so on. Software components are include applications programs and the operating
system.

“It's difficult to separate hardware and software, since even the simplest tasks rely on both. We need
hardware to enter data, but we need software to make sure that the computer can communicate with a
terminal. We need hardware to print a hard copy of stored information, but we must have software to
transfer the letters, one at a time, from the computer to the printer. We need hardware to actually compute
figures, but we need software to prepare our figures for computation. Let's look at each part of the system
in turn.

“A computer's hardware can be divided into three groups of electronics. The CPU, or central processing
unit, is the heart of every computer. It runs programs, performs calculations, and manages the operation of
the computer's other parts. Memory is the second essential component. It stores almost all information the
computer uses, from the data needed for program steps that will take place a microsecond hence, to
database information that might not be used for years. Finally, /O, or input/output, devices are necessary
for communication between a computer and its human users, or other electronic devices.

"The CPU provides what people think of as the brains of the computer. The CPU has several parts that work
together closely. The execution registers hold program instructions while they are being executed, or
carried out. Typically, only the current instruction will be held, which means that from the viewpoint of the
execution registers, there is no difference between big programs and little ones, or hard programs and easy
ones. The execution registers are also in charge of keeping track of current information - values that are in
the process of being changed, currently active locations in memory, and the like.

"Determining the effect of each program step is largely the province of the ALU, or arithmetic and logic unit.
The ALU is the CPU's decision-making unit. Its primary task is to make small comparisions (are these values
equal? which is greater?) that, when taken in great number, seem to be reasoned decisions. To support its
decision-making capability, the ALU also carries out elementary arithmetic operations like addition and
subtraction. Again, each small step may be insignificant in itseff, but they can eventually add up to give the
computer the illusion of sophisticated mathematical ability.

“The execution registers and ALU work hand-in-hand, with the registers posing the questions and the ALU
supplying the answers. The CU, or control unit, keeps them in touch with each other , and also with the rest
of the computer (the memory and input/output devices described below). In effect, the control unit serves
as the machine's traffic controller.

“Together, the execution registers, arithmetic and logic unit, and control unit largely determine how
‘powerful’ a given computer appears to be. One basic difference between computers is the speed at which
the control unit is able to transfer information between the ALU and registers. A second is the amount of
time required for the ALU to actually make a computation. A third is the amount of overlap that can occur -
expensive systems will have additional execution registers and ALU's so that work can begin on a new
program step before the old one is completely finished. A final power-enhancement mechanism is only

Update ... Kyan May/June Issue Page-2

found in the most advanced computers. They let operations take place in parallel - several program steps
are carried out simuitaneously.

"The CPU stands poised to carry out any single step of a computer program. To do useful work, though,
the CPU must work with a computer's other components. Memory is the most important. It's needed to
store programs that govern a computer's operation, along with data needed when programs are run, partial
results that are derived and must be maintained during the course of a program'’s operation, and any final
results that are saved for perusal later.

"Memory is usually divided into two varieties - main or primary memory and secondary memory. Main
memory comes with the computer; it's built in, but can usually be increased by purchase of additional
'memory boards' or 'memory chips'. Simply stated, main memory stores running programs and the
information they currently use. It is directly in the service of the CPU, which means that the CPU (which is
very fast) can go to and from main memory to get new program steps, and to store or retrieve data. Main
memory is usually one of the more expensive hardware components, so computers will typically have just
enough to meet the requirements of the largest programs they're liable to encounter.

"Secondary memory holds programs and information that are not currently being used. Most people have
seen the floppy disks that serve as secondary memory for personal computers. Typically, each floppy disk
will store the instructions for (and have room for the results of) a single program. The computer user has to
physically insert the disk in order to transfer its contents to main memory, and run the program it holds,

"Secondary memory for bigger, shared, computers is generally made from large, rigid disks that are
permanently mounted alongside the computer. Each user has a share of this common secondary storage,
and doesn't have to divide her programs, or results, amongst floppy disks. Multi-user computers
automatically carry out any transfers between secondary and main memory for the benefit of the computer
user.

“llO (for input/output) devices form the third major component of computer hardware. /O devices are
specialized machines for communication between computer and people, or other computers. Without /0
devices, we'd have no way to store programs, or to supply data when they ran, or to receive resuits when
they were through. An output device, like a printer, can be used to get the resuits of running a program, or
to inspect data stored in another computer component - say, the main memory. Input devices serve a
complementary purpose; we use them to supply the CPU (or memory, through the CPU) with new
information.

"Network connections are a relatively new addition to the I/O family. They allow extremely high-speed
communication between different computer systems. Networks are most commonly used to let computer
systems share access to certain components, like printers or terminals. However, experimental networks
can let the CPU on one computer interact with the memory of an entirely different machine, or give two
different users the illlusion of being on the same system.

"How do we compare the hardware of two different computers? The speed of a computer's CPU is a
convenient reference because, regardless of the computer’s price or its programmer’s ability, its programs
are almost invariably still executed one step at a time. Since a computer's actual computing is completed in
the give and take of its control unit, execution registers, and ALU, the amount of time a single step takes
provides a reasonable basis of comparison for two computers that will be expected to run the same sort of
programs.

"We can also compare two computers by their size. This measurement is usually concerned with the
amount of primary memory the computer has, or is capable of having. This can be important, because some
programs may require very large amounts of primary memory to run effectively, or to run at all. Finally, we can
compare computers on the basis of peripherals. These include secondary memory, as well as input and
output devices.

"All the measures described above have their uses. However, we generally find that criteria like CPU
speed, memory size, and peripherals alone are best used for comparisons of smaller computers intended
for personal use. For larger computers that will probably be shared between a number of users, though,
these measurements are often too simple. The prospective purchaser must try to determine just how
harmoniously the separate hardware components work together. Ultimately, this wifl often turn out to
depend on our next topic - software.

Update ... Kyan May/June Issue Page-3

"Computer software falls into two major categories: applications programs, and operating systems.
Applications programs are specific; each program does one particular job when (and only when) a computer
user requests it. The operating system, in contrast, is a general piece of software. It runs continuously to
coordinate the operation of the computer's hardware and software resources. In effect, computer users
interact directly with applications programs, while the operating system is more closely associated with actual
hardware.

"When we think about software we usually imagine applications programs - programs that do some specific
task. Some typical applications programs are:

Programs for word processing and text editing.

Programs for game playing.

Programs that handle accounting or arrange spreadsheets.
Programs that help with instruction.

Programs that prepare programs to run on the computer.

OO0O0O0O0

"A look at any computer magazine will provide dozens of additional examples.

"By itself, though, computer hardware isn't sophisticated enough to run applications programs. Even
though the control unit coordinates hardware operation in a low-level way, there must still be a connection
between applications programs and the actual computer hardware. Why? Well, a typical applications
program needs more that just raw computational power. It will undoubtedly require the services of different
input and output devices. It may be stored with other programs in the computer's memory, and have to be
retrieved before it can be run. It might even need hardware that's currently being used by another
programmer.

"This is where operating system software comes in. The operating system is a very large program that
controls and coordinates the operation of computer hardware for the benefit of individual users and their
programs. Now, if a computer just ran one program and had no peripheral equipment - like the
microprocessor found in a toaster or carburetor - it wouldn't really need an operating system. The point of
an operating system is to create an environment in which different applications programs, which use the
computer system in a variety of ways, can be run. Since the operating system is so necessary, it is aimost
invariably supplied with the computer directly from the hardware manufacturer.

"What are some of the practical problems that an operating system deals with? For one thing, the operating
system controls computer access. When you enter a password to log onto a computer, you do so at the
operating system's request. The operating system organizes users; it, rather than you, is responsible for
keeping stored programs and information that belongs to dozens or hundreds of computer users separate
and retrievable.

"The operating system also allocates independent resources. Suppose that several computer users want
to use a single printer. Each user might independently request that some stored information be printed; it is
the operating system's job to form a waiting list so that requests can automatically be handled in turn.

"Not all resources are independent, so the operating system must also schedule shared resources.
Although a printer can only handle one job at a time, faster resources (like the CPU) can be shared between
users. The result of resource sharing is that each system user gets the illusion that she is working on her
own personal computer. Behind the scenes, though, the operating system must work furiously to ensure
that individual users' programs don't get mixed up as each takes its turn at using the CPU and main memory.

"From our point of view as computer programmers, the operating system's main job is managing the
programming environment. It supplies the tools we need to write programs, then arranges for our programs
to run. As a result, we don't have to worry about the myriad details that are involved in computer operation.

LA A2 3 AR s R e d i i d il ittt el Xl ittt d i itz 2l 22222 2222222222 22%3

Thank you Professors Cooper and Clancy! The preceding text is an excerpt from their textbook "Oh!
Pascal!”.

Update ... Kyan May/June Issue Page -4

ASSEMBLY LANGUAGE PROGRAMMING

PROGRAMMING IN 6502 MACHINE LANGUAGE
by John Fachini

With the release of Kyan Pascal version 2.0 and the KIX environment, a few 'loose ends' have cropped up
over the past couple of months. So instead of proceeding with the usual beginners column, I've decided to
use the column this month to provide everyone with some requested routines, clarifications, and
suggestions. ‘

WRITING FUNCTIONS: The first point has to do with writing FUNCTIONSs using Kyan Pascal version 2.0.
Since 2.0 conforms to the International Standards Organization of syntax and implementation, the contents
of a FUNCTION written completely in assembly code must be changed from 1.2.

The first difference is the local stack interface (remember from last month that the stack offset starts at 5
bytes deep instead of 3 as in Kyan Pascal version 1.2). Due to the ISO compatibility issue, a second
difference has surfaced. 1SO requires that the function value be explicitly assigned a return value;
assigning the function identifier a value implicitly from assembly language does not satisfy the ISO
requirement. This may seem to be a nuisance but, as usual, assembly language programmers can easily
turn a nuisance into an advantage.

Two ways to tackle the function limitation are what we'll call the ‘preferred method' and the ‘lazy method'.
First, the lazy method. Consider the following function:

FUNCTION LAZY_EXAMPLE: INTEGER
BEGIN
LAZY_EXAMPLE:= 0; {used to satisfy ISO requirement }

etc. ;code in function body assigns actual return value

There is really nothing wrong with writing functions this way. But, why waste an assignment? There's
another solution which makes debugging easier and doesn't waste an assignment operation. Look:

FUNCTION BETTER_EXAMPLE: INTEGER;
VAR
RESULT: INTEGER,;

etc. ; store function value in local variable

BETTER_EXAMPLE:= RESULT
END;

Note the two major differences:
1. ISO is satisfied with a non-wasted assignment
2. The resulting function value can be checked from Pascal

To keep the 'better way' simple, make sure that the local variable you use to temporarily store the function
value is the last local variable declared. This way, you know the function value destination always has it's
lowest byte at stack offset 5.

Recall the two functions listed in the newsletter? Here's the 'working versions' of each:

FUNCTION DEVICECOUNT: INTEGER;
{ Return number of active devices }

Update ... Kyan May/June Issue Page-5

VAR
RESULT: INTEGER;

BEGIN
#A
LDY $BF31
INY
TYA
LDY #5
STA (_SP)Y 'result’ value @ tos
INY :
LDA #0 ;:MSB of integer is zero
STA (SP)Y
#

DEVICECOUNT:= RESULT {satisty ISO }
END;

FUNCTION OPENAPPLE: BOOLEAN;
{Return TRUE if paddle button 0 or open-apple pressed }

VAR
RESULT: BOOLEAN;
BEGIN
#A
CLC
LDA $CO061 ;Status location
AND #3$80
ROL
ROL ;Puts a zero in Accumulator if off, 1 if on
LDY #5 ;'Result’ gets function result first
STA ((SP)Y
#
OPENAPPLE:= RESULT {ISO strikes again!}
END;

DISABLING LOWER CASE OUTPUT: We've received a few requests from Apple][+ users with 80
column cards as to how to disable lower case output. First, an explanation, then a solution.

The KIX environment determines the case of the characters it outputs to the screen based on the presence
of an 80 column card in the system. If an 80 column card is found, lower case characters are used;
otherwise, upper case only is used.

The problem for Apple][+ users with 80 column cards occurs when they go to 40 column mode while in the
KiIX environment. Since KIX still sees an 80 column card, it continues output in lower case. The solution is
the following Pascal program, you should run this program when you see the KIX prompt.

PROGRAM DISABLE_LOWERCASE;

BEGIN

#A
LDA $BF98 ;Loadthe Machine I.D. Byte
AND #2 ;Tell system no 80 column card
STA $BF98 ;And save change

#
END.

Memory location $BF98 is the ProDOS Machine Identification byte. When the system is first booted,
ProDOS looks at all the peripherals in each slot of the computer and identifies each by matching certain
‘hardware identification bytes'. When ProDOS finds an 80 column card it makes the second bit in the
Identification byte a '1' ('on'). The previous program makes that bit a 0 (‘off'). this change will work until you
reboot your system or re-execute the 'ProDOS' system file.

The entire topic of ProDOS provides great potential for future columns. f you have any questions about
ProDOS or your Apple in general please send them in, and I'll do my best tio answer them. To be honest, |

Update ... Kyan May/June lssue Page -6

was a bit underwhelmed by the reaction to the last column. If you don't write and tell me what you want to
see in this column, we'll probably end up going in circles and jumping aroung to all different topics.

CHAINING SYSTEM FILES: We have had many requests for a routine which allows programmers to
CHAIN programs when not in the KIX environment (on a stand-alone disk, for example). the current version
of CHAIN will not support this because CHAINing in version 2.0 is done via the KIX operating environment.
Since KIX is not present on the stand-alone disk, the call to CHAIN causes the system to die. The rule is
“never mention a problem without a solution”, so here's the solution, another CHAIN procedure:

PROCEDURE CHAINPROGRAM(VAR PROGRAMNAME:PATHSTRING);

The format of the call is pretty obvious, but the type "PATHSTRING" may not be. (Anybody with a System
Utilities Toolkit should recognize PathString!). A PATHSTRING is:

TYPE
PATHSTRING = ARRAY[1..65] OF CHAR;

Recall from your Kyan Pascal 2.0 manual that a ProDOS pathname cannot be longer that 64 characters. In
order to use a pathname from assembly language, the letters in the pathname must be moved 'back’ one
byte so that the first byte in the aray is the number of characters in the pathname. Why must this shift be
done? It's because of the ProDOS MLI:

The ProDOS MLI! (Machine Language Interface) provides programmers with a very easy interface to
ProDQOS file operations. Each call has the same format:

JSR _MLI
DB opcode_byte
DW location_of_parameter_list

The _MLlI is at location $BF00 and is predefined in the STDLIB.S compiler macros file. The opcode_byte
corresponds to the one-byte operation code. This byte tells the MLI exactly what you want to do. The
location_of_parameter_list field is the address (lo byte, hi byte) of the list of parameters that ProDOS will
need in order to perform the operation you have requested.

We'll go into more detail about the MLI and ProDOS in a future entry in the newsletter. For now, use the
following procedure and, if you don't understand it, carefully read the remarks a few times. If you are even
more curious about ProDOS and the MLI, get a copy of "BENEATH APPLE PRODOS" from Quality
Software.

PROCEDURE CHAINPROGRAM(VAR PROGRAMNAME: PATHSTRING);
{Chain program "pathname” to current program. Note that no error checking takes place
in this code so care should be taken when calling it.}
BEGIN
#A

LDY #5 ;Stack address of VAR parameter

JSR MAKEPATH ;Make string into pathname

STX CHPINFO+1 ;Address (LSB) of pathname

STX CHPOPEN+1

STY CHPINFO+2

STY CHPOPEN+2

JSR _MLI
DB $C4 :Get File Info
Dw CHPINFO ;Parameter list

:By using the load address instead of file type, you can use this routine to chain pascal
;programs to assembly language programs and vice versa. The only exception to this is
;SYSfiles which are loaded at $2000 and self relocating to either $800 or $4000

LDA CHPINFO+4 ;program type

CMP #$FF ;SYStem file?

Press RETURN for more; type NO to stop
BNE CHP1 ;No

Update ... Kyan May/June Issue Page-7

LDX #>%$2000
LDY #<$2000
JMP CHP1A ;Set load address to $2000
CHP1 EQU *
LDX CHPINFO+5 ;Load the porgram at whatever address
LDY CHPINFO+6 it was saved at
CHP1AEQU *
STX $BEFE
STY $BEFF
CHP2 EQU * - ;Open the file so it can be read
JSR _MLI
DB $Cs8 :Open call
DW CHPOPEN
LDA CHPOPEN+5 ;Put resulting reference number
STA $BEFD ;:at another safe byte

;The last operation this code has to perform is a relocation of the code which will read the
;chained file so that the subsequent close and jump to execute the new code does not
;get overwritten by the incoming file. Note that we aren't worried about overwritting the
;LIB file ($3000-$BEFF) since each Pascal code segment re-loads the LIB file anyway

0

LDX #
CHP3 EQU *
LDA CHRELX
STA $BE00,X :Safe for use
INX
CPX #200 :Move up to 200 bytes (plenty extra)
BNE CHP3
JMP $BE0O :Execute the relocated code

Code to relocate:

CHRELEQU *
RELCON EQU $BE00-*
LDA $BEFD
STA CHPREAD+1
LDA $BEFE
STA CHPREAD+2
LDA $BEFF
STA CHPREAD+3
JSR _MLI
DB $CA
DW CHPREAD
LDA #1
STA CHPREAD
JSR _MLI
DB $CC
DW CHPREAD
JMP ($BEFE)
CHPREAD EQU *+RELCON
DB 4
DB 0
DW 0
DW $FFFF
Dw o0

3

;Relocation constant

;L.SB of starting address

;Read request

:Make read list into close list
:Close

;And execute new program via indirect jump

;Read call has 4 parameters

;Reference number

;Address to load into (set by code above)
;Load length (as far as we can get)
;Actual length read (not needed)

;Parameter lists used by main code:

CHPINFO EQU *

;Get File Info parameter list

DB 10
DS 18 ;Rest is set by code or call
Update ... Kyan May/Jdune Issue Page -8

CHPOPEN EQU *

DB 3

DW 0 ;Address of pathname (set by code)
DW $9000 ;Page aligned 1K

DB 0 ;ProDOS will put the refnum here

;This routine converts the string whose address is (_SP),Y into a ‘pathname’: a pathstring
;preceeded by a length byte

MAKEPATH EQU *

LDA (SP)Y ;Address of string address
STA _T+2
INY
LDA (_SP)Y
STA _T+3
. LDY #64 ;Character counter
MPATH1 EQU *
LDA ((T+2)Y :Get a byte from the string
CMP #32 ;Is this a blank?
BNE MPATH2 ;No: found count
DEY
BPL MPATH1 ;Keep trying until <0
INY :Make y=0
TYA
STA (_T+2)Y ;:Makes length of string 0
JMP MPATH3
MPATH2 EQU *
INY ;Actual path length
sSTY T ;Save for later
DEY
MPATH4 EQU *
LDA ((T+2)Y ;Get a byte of the string
INY
STA (T+2)\Y ;And push it 'back’ one byte
DEY
DEY FixY
BPL MPATH4 ;Do all byte 0..length
INY Sothaty =0
LDA _T ;Recover length byte back
STA (_T+2)Y ;Makes string into pathname
MPATH3 EQU *
LDX _T+2
LDY _T+3
RTS
#
END;

All that typing should keep you busy for a while, at least. Remember: send me some mail! If you have a
question, write it down. You're probably not the only person out there with that certain question and you'll
be helping everybody by taking the time to write. Go for it.

Next time we'll go back to easier topics, but still try to keep it interesting for those of you who know all that
beginners stuff already. Somebody send me and idea!

Update ... Kyan May/June Issue Page -9

PASCAL PROGRAMMING

Version 2.0 -- Troubleshooting Reports

The following problems have been encountered by users of Version 2.0. If you have encountered other
problems, please let us know. Also, please read the Letters and Assembly Language Programming
sections of the newsletter for more information about 2.0. (NOTE: Owners of Version 2.0 can obtain
updated software at any time by exchanging their original program disks. There is no charge for these
updates.) :

1. Case Statement Errors.

A little known ISO restriction is that the character assigned to the variable in a Case statement must exist in
the set of case test statements. For example:

CASE CH OF
‘A’ : actiont;
'B' : action2;
'C’ : action3;
'D' : action4
END;

If CH is equal to F, a Case Index Error will be generated.

A bug has been uncovered in the Compiler Case statement which also causes a Case Index Error. This bug
has been corrected.

2. _UsesHires Error.

An error occured in the final translation of the _UsesHires file which causes programs to crash. This error
can be corrected by:

a. Load the _UsesHires file with the Kyan Editor and go to line 248.
b. Change: "U EQU 22" to "I EQU 22",
¢. Save the file and quit.

3. Chaining.

The Version 2.0 Chain procedure works fine when you chain files under the KIX operating shell. However,
if you want to chain system files on a stand-alone disk, you must use a special routine which is found in the
Assembly Language section of this newsletter.

4. KIX Command Bug?

Several single disk drive users have reported a bug in the "CP" command when trying to copy a file. We are
happy/sad to report that this is a bug in ProDOS and not in KIX. When a file is opened by ProDOS, the
device in which the original file volume is located is removed from the open device list by ProDOS. Thus,
when the CP command goes looking for a destination device, none can be found. Apple has been aware
of this problem for some time but has not fixed it. Unfortunately, there is nothing Kyan or you can do to
make CP work correctly with a single drive system.

5. Assembly Language Listing.

The manual contains an error regarding compiler output when using the -S option. The output file is
automatically named P.OUT, not Filename.S as stated in the manual. To save this file, use the file Rename
command found in the Filer or KIX and rename P.QUT to Filename.S.

Also, the compiler's assembly language output is actually a string of macros. The expansion of these
macros is contained in the text file STDLIB.S on the V2.0 disk. If you want a full listing of P.OUT with the
macros expanded, add the compiler directive * MEX ON" (be sure to include the space before MEX and
ONj) on line 1 of P.OUT and assemble the program using the list option (i.e., AS -1).

Update ... Kyan May/June lssue Page- 10

Data Structures Using an Open Hashing Function
by Sonja Newell

A dictionary, which is used in the following program, is a fundemental data type used in maintaining a set of
data. A dictionary can be defined by the basic operations: INSERT, DELETE, MEMBER and MAKENULL.
An INSERT procedure is used to put data into the dictionary; the DELETE procedure is simply used to
DELETE data from the dictionary; the MEMBER function is used to determine wheteher the data is already
in the dictrionary or not; a MAKENULL procedure is used to initialize the data structure.

The following program illustrates the Open Hash Table Data Structure, a widely useful technique for
implementing dictionaries. By implementing a hash function, the potential time to search for a record is cut
down and therefore your runtime is shorter. Open hashing allows a set to be stored in potentially unlimited
space. The RECORDs are stored in an array called a ‘bucket table' where the hashed value returned by the
function is the bucket number. The bucket number is an index to the dictionary array, therefore by using a
bucket number you don't have to search through a whole list of records, but instead through only a
designated portion of those records.

First, you need to determine the number of buckets you want to use. Then decide which key field in the
record you want to hash, usually a character array. The average time for operations increases rapidly as the
number of records exceeds the number of buckets, therefore keep that in mind when choosing the
number of buckets in the dictionary. Once you've decided on your data structure you can implement the
dictionary procedures and enter your files.

If you want to learn more about hashing (for instance, there is a Closed Hash Table Data Structure), you can
refer to most computer science data structure texts. The one I've referred to for this article is "Data
Structures and Algorithms" by Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman (Addison-Wesley
Publishing Company)

A good practice to get into when using pointers is to draw yourself a picture of your data structure. The
picture for this data structure would look like this:

Bucket Dictionary
Number ARRAY Data Next

1 > - >[A —>NIL
2 ——t— NIL
19 > “—F—>NIL

Update ... Kyan May/June Issue Page - 11

PROGRAM Stereo(input,Output,Albums);

(* Stereo contains the titles of all my albums. Should | wish to add fields to the RECORD 'Data’, such as
‘Musicians’, 'RecordLabel’, 'Instruments’, etc. | can easily add them. *)

TYPE
Buckets = 0..19;
String = ARRAY[1..20] of CHAR;
Dataptr = *Data;
Data = RECORD
Title: String;
Next: Dataptr
End;

Dictionary = ARRAY[Buckets] of Dataptr;
(" Note: Do NOT attempt to store a file of RECORDS with a 'Next' pointer field. it won't work *)
VAR

D: Dictionary;

Albums: Text;

F. String;

Function H(X: String): Buckets;
(* Hashing function to determine bucket index *)

VAR

Sum, J: Integer;
Begin
Sum:= 0;

For J:=1to 20 do

Sum:= Sum + ORD(X[J]);
H:= Sum MOD 20;
End; (* Function H*)

Procedure MakeNull(VAR D:Dictionary);
(* Initialize the dictionary pointer to nil *)

VAR
I: Integer;
Begin
Forl:i=0to 19do
D[l]:= NIL;

End; (* Procedure Makenull *)

Function Member (X: String; D: Dictionary): Boolean;
(* Member checks to see if the record is already in the dictionary*)
VAR
Current: Dataptr;
Begin
Member:= FALSE;
Current:= D[H(X)];
While Current <> NIL do
Begin
If Current*.Title = X then
Member:= TRUE;
Current:= Current*.Next;
End; (* While *)
End; (* Function Member *)

Update ... Kyan May/June Issue Page - 12

Procedure Insert(S:String; VAR D:Dictionary);
(* Inserts a RECORD into a Dictionary *)
VAR
Bucket: Integer;
OldHeader: Dataptr;
Begin
If Member(S,D) <> TRUE then
Begin
Bucket:= H(S);
OldHeader:= D[Bucket];
New(D[Bucket]);
D[Bucket]*.Title:= S;
D[Bucket]*.Next:= OldHeader; "
End; (* If Member *)
End; (* Procedure Insert *)

Procedure ReadFile(VAR D:Dictionary);
(* Reads each string from a text file *)
VAR

A: String;
Begin
Reset(Albums, ‘/vol/dir/ALS");
While Not EOF(Albums) do

Begin

Readin(Albums,A);

Insert(A,D);

End; (* While Not loop *)
End; (* Procedure ReadFile *)

Procedure PrintDict(D:Dictionary);
(* Prints all the records in the dictionary *)
VAR

I: Integer,;
Current: Dataptr;
Begin
Forl:==0to 19do

Begin

Current:= D[l];

While (Current <> NIL) do
Begin
Writeln{Current?. Title);
Current:= Current*.Next;
End; (* While loop *)

End; (* Forlloop ™)

End; (* Procedure Printdict *)

Procedure Enter(VAR D: Dictionar);
(* Enter each string into an external text file *)
VAR

A: String;
X, Y: Integer;
Begin
Writeln('How many titles?");
Readin('Y);
ForX:=1to Y do
Begin
Writeln('Enter album title'");
ReadIn(A);
Insert(A,D);

End; (* For X loop *)
End; (* Procedure Enter *)

Update ... Kyan

May/June Issue

Page - 13

Procedure Delete(Var D: Dictionary);

VAR
Current: Dataptr;
Bucket: Integer;
S: String;
Begin
Writeln('Which item do you want deleted?");
ReadIn(S);
If Member(S,D) <> FALSE then
Begin
Bucket:= H(S);
If D[Bucket] <> NIL then
Begin

If D{Bucket]*.Title = S then
D[Bucket]:= D[Bucket]*.Next
Else
Begin
Current:= D[Bucket];
While Current*.next <> NIL do
If Current?.Title = S then
Current*.Next:= Current*.Next*.Next
Else
Current:= Current*.Next;
End; {* Else *)
End; (* If %)
End; (* f Member *)
End (* Procedure Delete *)

Procedure Writetodisk(D: Dictionary);
VAR
Bucket: Integer;
Begin
Rewrite(Albums,'/vol/dir/ALS");
For Bucket:= 0 to 19 do
Begin
While D[Bucket] <> NIL do
Begin
Writeln(Albums, D[Bucket]*.Title);
D[Bucket] = D[Bucket]*.Next;
End; (* While *)
End; (* For Bucket *)
End; (* Procedure Writetodisk *)

Begin
Makenull(D);
ReadFile(D);
Writeln ('Type "lesh" when your done with your program’);
F:="Flag
While F <> 'Flnlsh ‘do
Begin
Writeln('Do you want to Enter, Delete, Print, or Finish?");
Readin(F);
if F="Enter 'then
Enter(D);
if F ="Print "then
Printdict(D);
if F = 'Delete 'then
Delete(D);
End; (* While *)
Writetodisk(D);
End. (* Program Stereo *)

Update ... Kyan May/June lssue

Page - 14

Letters

Let me take a moment to encourage our readers to write in to us. We read every piece of mail and respond
as fast as we can. | would also like to hear any comments and/or suggestions about the newsletter. What
articles would you like to see? What programs would you like to try? | haven't heard a peep from you readers
regarding these areas so | just wing it, hoping you'll enjoy the newsletter as is. We are very open to
suggestions. | would also like to request you send in your programs, Pascal and Assembly Language. They
are fun to read and I'm sure most of you readers have something to offer your fellow subscribers. After all
Pascal isn't for wimps......

On to the letters:

We have received many inquiries regarding our mysterious "Appendix H". I've decided to use

Mel Holliday's letter as an example:

"Just received new update this a.m.. I'm going through the GREAT new manual | see a
reference to Appendix H. | have no Appendix H. What happened to it? Of course that
is the section | want to see.”

Appendix H was originally a listing of the programs in our System Utilities Toolkit. it was removed at the last
minute due to space limitations. Unfortunately, allof the references to it were not removed with it. For those
of your who've already received the System Utilities Toolkit in the mail, | hope your enjoying it.

The next letter is from Neal Jensen of Beloit, Wisconsin.

"In the April issue of A+ there is a review of Pinpoint's Desktop-Accessory program.
The article mentions that Pinpoint is working with Kyan and others to allow users to
create accessories for Pinpoint using Pascal and BASIC. | am glad to see this
cooperation between independent software houses. This cooperation should produce
standards that will make a variety of software packages more compatible and easier to
operate.”

Funny you should mention this Neal, in our next issue we will discuss the use of Kyan Pascal with Pinpoint
by Pinpoint Publishing and Macroworks by Beagle Brothers. | enjoyed your letter and want to thank you for
‘writing in.

A A2 222222222222 222222 sy

Bod Robichaux writes in about the "FirstWord" program in the tutorial (Tut. 1V-30). As his letter was too long
to include in the newsletter, I'd like to touch on the main point. Many people noticed the WHILE loop kept
repeating and you couldn't exit. This was due to the way string handling is done in version 2.0. Once
you've entered the word into a STRING ARRAY, the string gets packed with spaces after the word. You
cannot compare a single character constant with the first letter of an ARRAY. You can, for example,
compare a 15 character constant with a 15 character string. We felt this was very limiting to certain programs
and have fixed this problem. Should any of you care to send us your disk we are alwayshappy to ship you a
version which will access strings one character at a time. Thanks Rod for your nicely detailed letter!

BENERERRERRA L RRAAR N AT R AN AR AR AR AAN

The last letter | want to include in this column is from Kathl Filer wling Gr hio. who made some
fine suggestions regarding our Pascal product. We DO pay attention to all suggestions made by our
readers.

"There is a real inconsistency on pathname usage which could cause real confusion if a
new user blindly follows your instructions. When does one need to change directories
or volume names? When is it necessary to switch disks? Why is it necessary to use
complete pathnames to name files in the editor? | suggest you clearly outline the two
major modes of using Kyan Pascal - menu and KIX command.

"It took me a lot of time to figure out why sometimes the KIX commands worked alone,
such as RM, and at other times the BIN/RM was required. | think you should clearly state
that any file in the BIN directory on the booted disk (on which KIX.SYSTEM resides) or

Update ... Kyan May/June Issue Page - 15

in the present working directory, can be run with out typing the whole pathname.
(Following your configuaration directions yields a second disk without a BIN directory,
so any executable file would naturely run if its filename were entered.) Therefore, if a
volume with KIX commands is booted, e.g. /KIX (D2,S1), the KIX commands are
immediately available, even if the present working directory is changed to another disk.
If the disk with MENU, INTRO, KIX, QUIT, and CD is booted, e.g. (D1,S1), any of those
programs are immediately available by simply typing its filename, even if the present
working directory has been changed to another volume.

"For one disk users this means that either the /Kyan.Pascal or the /KIX disk can be
booted, depending on which mode the programmer plans to use - menu or KIX
command. If the boot disk and the programming disk have the same volume name, no
CD command is needed, and any command or file on the boot disk, including those in
the BIN directory, OR any executable file on the second disk, on which there are no
directories other than the volume name, can be accessed simply by typing its name.
This even holds true if the second disk has a different volume name and CD has been
used to change the present working directory to that second disk.

"For two-disk users this means that the /Kyan.Pascal disk is booted. However, its
contents will depend on whether the user plans to use the menu mode or the KiIX
command mode. There is room for most of the KIX commands on that disk when MENU,
INTRO, and FILER are removed. The boot disk should probably be renamed /KIX if it
contains many KIX commands. Thus the original /KIX disk could be swapped in if an
exotic command is needed. As the manual states, the first action after booting on the
part of the user is to use the CD command to change the present working directory to
/User, or whatever the volume name is for the storage disk.

"I certainly do not mean to discourage you with such a list of problems. | am glad to
have Kyan Pascal and would encourage other Apple users to purchase it. (Even if the
reviewer in inCider seemed to be only looking for a toy.) 1| hope these suggestions are
useful "

Let me just add, Kathleen, that you need not type the entire pathname of the file when trying to use the
editor. All you have to do is change your working directory with the CD command first, then type the
filename.

Update ... Kyan May/June Issue Page - 16

UPDATE ... KYAN

Kyan Software Inc. July/August Issue
1850 Union Street #183 Volume 1, Number 5
San Francisco, CA 94123 © 1986 Kyan Software Inc.

Apple Edition

(Editor: Sonja Newell)

WHAT'S NEW?

Attached to this issue of the newsletter is Kyan's catalog of products for the Apple //. Several new
products are being introduced including:

o TurtleGraphics Toolkit (Available now)

0 MouseGraphics Toolkit (Available 9/1/86)

0 Code Optimizer Toolkit (Available 8/1/86)

o AppleWorks KIX (Available now)
The new version of KIX contains many improvements and enhancements, not the least of which is
compatibility with AppleWorks. KIX is now a desktop accessory for AppleWorks. You can call the KIX
window from within AppleWorks, execute any number of KIX commands or utilities, and return to
AppleWorks right where you left off.
In the coming months, Kyan will introduce a series of utility programs which will run in the AppleWorks KIX
environment. Also, a new programming toolkit will be available this Fall which will provide you with the
utilities needed to write your own desktop programs for AppleWorks using Kyan Pascal.
Other improvements in KiX include:

o A new command, MVV, now renames volumes.

o CP and MV now have a -Q (Query) option, to prompt for permission to initiate copy
processing before any takes place.

o CAT and LPR now have -P and -F options: -P stops printing at the end of each page
and asks for a new sheet; -F prints the filename being printed on the top of the first
sheet printed.

o CAT prints, displays and conCATentates AppleWorks Word Processor files. With the
-V option active, you can view your AWP formatting options also.

o CAT with redirection but no filenames lets you type into a TXT file or directly to the
printer.

0 Compatibility with Catalyst, MouseDesk and other similar programs.

o Pressing the [Escape] key aborts a command at any point in its execution.
o Canceling output to screen, file, or printer by pressing [Escape].

o ;Typetields now include AWP, ADB, and ASP file types.

o You can specify file ;typesin LS, RM, CP, and MV commands.

Update ... Kyan July/August Issue Page-1

KIX UpGrade Options and Summer Software Sale!

There are two upgrade options for KIX. You can upgrade to AppleWorks KIX for only $20.00 (plus shipping
and handling); this upgrade includes a new program disk, user manual and quick-reference card. Or, you
can upgrade to KIX version 1.02 at no charge by returning your original KiIX disk; this upgrade incomporates
the non-AppleWorks changes listed on the previous page.

We would like to sell some Toolkits this summer and so we've put together an offer which you just can't
refuse (we hopel). If you order any Toolkit from our catalog before August 15, you can
deduct 10 percent from the purchase price. Order two Toolkits and you'll save10
percent and get a free Kyan binder. If you order three or more Toolkits, you get a free
binder plus a 20 percent discount. This offer expires August 15 so be sure to order
right away! (Important Note: This special price offer is being extended only to
subscribers to Update ... Kyan! If you phone-in your order, please be sure to mention
that you are a subscriber and want the special prices.)

Update

Programming Contest

After our last newsletter, we received numerous programs from you. I've come to the conclusion that there
are some really great programmers using Kyan Pascal. | enjoyed ALL the submissions and encourage
everyone to continue sending them.

The first winner of a $50.00 cash prize is Lester McCann. His winning entry is printed in the Assembly
Language section of the newsletter.

Programming Notes

1. We have had a few inquiries regarding the mysterious compiler "error 47". The definition of this error is
“"Function not able to return structure in ISO". If you are trying to use a FUNCTION defined as an ARRAY,
RECORD, pointer or anything other than simple ordinal types, you will probably run across this error. ltis a
restriction imposed by the ISO standard.

2. Another user asks that we list our latest versions in the newsletter so people will know when to send in
their disks for an update. Something like this:

Latest versions (Apple):

Kyan Pascal Plusc.cccoevveicricninenen, 2.02

Kyan Pascalc..cccoovvvvrriiecinnneennen. 2.02

System Utilities Toolkitccccueneenes 1.00 (nothing new here)
MouseText Toolkitcccceeevreriiennnnne. 1.00 "
Advanced Graphics Toolkit 1.00 "
TurtleGraphics Toolkitcccceeevueeneens 1.00 "

|14 U 1.02 (See "What's New")

We think this is a great idea because our subscribers don't have to rack up their phone bill calling to find out
about our latest versions. So, beginning with this issue we will insert a box in the Update section with the
latest revision level and the significant changes from the earlier version.

Update ... Kyan July/August Issue Page-2

3. Mr. James Luther of Overland Park, Kansas has a suggestion for when a program drops you into the

- Apple monitor or you get an asterisk prompt after your program bombs. He suggests several calls which will
save you from having to reboot the system. The following commands call the ProDOS ML! "QUIT" routine
and take you back to KIX. There are different locations depending on which directives you are using.
Without using _SystemFile or _UsesHires directive, enter: 923G
With the _UsesHiRes, but not the _SystemFile directive, enter: 4123G
With the _SystempFile directive, but not the _UsesHiRes directive, enter: 8EEG
With the _UsesHiRes and the SystempFile directives, enter: 40EEG
Before calling these commands, you should check to verify that the address being called (923, 4123, 8EE,
or 40EE) has the machine language instruction JSR $BF00 with a $65 after it by typing the address and a
"L" (i.e. 923L)
If you cannot find any of these calls, enter:

800: 20 00 BF 65 06 08 04 00 00 00 00 00 00
800G

This program looks like this:

JSR $BF00 scalt ML

DB $65 ;QUIT call

DW PQT ;pointer to start of parameter table
PQT DB $04 ;4 parameters

DB $00 ;all00's

DW $0000

DB $00

DW $0000

We like to print suggestions, technical notes, and answers to questions from Kyan
users. If you have any, send them in and we will do our best to include them here in
the newsletter.

Pascal Programming

Functions and Procedures in Pascal
by Ed Nelson Il

The main difference between a function and a procedure is that a function must return a value, whereas a
procedure does not. Procedures can, however, return a value. This article discusses the use of functions
and procedures in Pascal programs.

A function will return the value in its name. For example, if a function is declared as "Function Paint: char:",
then the word Paint will contain the character that has been returned by the function. This is limited in its
usefulness; to retain the value returned by a function you must assign its value to a variable. However,
functions are ideal for testing looping conditions since they provide the necessary information with a
minimum of Pascal commands.

There are two types of procedures -- call by value and call by reference. The call by value procedure is
declared like Demo3 in the demonstration program listed below. Although these procedures do not return
values, they can affect global variables. Call by value procedures can be used to do anything that does not

Update ... Kyan July/August Issue Page-3

require the return of information. For example, a call by value procedure can display information on the
screen.

The other kind of procedure is the call by reference. The call by reference procedure is declared like
Demo4 in the demonstration program. This kind of procedure returns its values in variables declared as
VAR in the procedure heading. Once the procedure has completed execution, the variables contain their
new values, where the information is retained until it is changed.

Note: ISO Pascal does not allow certain data structures to be returned by a Function (this is the 'Error 47' described
elsewhers in this newsletter). A way around this is to use a procedure with variables passed by reference.

Functions and procedures have similar abilities. As a general rule of thumb, anything a function can do, a
procedure can do, and vice versa. The largest difference between functions and procedures does not lie
in their respective abilities and limitations, but in how they are used.

Functions are generally used to find and return a value. Procedures are used to do other things, such as

displaying data, or opening and closing files. The main difference is stylistic, not something enforced by
the language.

In the demonstration program below, functions and procedures are used for different aspects of pattern
matching in strings. S2 will be the pattern that is looked for, and S1 will be the string that is searched. S3 is
not used until it is passed into Demo4.

Note: There was a misprint in some early editions of the manual regarding the Index function. The correct
description of this function is: the first string passed (S1) is the string to be searched. The second string passed (S2)
is the pattern looked for in the first string.

The two functions, Demo1 and Demo2, are used to find a value and return it. Demo1 returns a TRUE if S2
is in S1 and returns a FALSE if S2 is not in S1. It is worth noting that a boolean function can be used
wherever a boolean expression is used, such as in IF-THEN, UNTIL, and WHILE statements. For an
example, look at the IF-THEN statement in the main program. The second function, Demo2, counts the
number of occurrences of S2 in S1. The main program prints out the information received.

Procedure Demo3 is a call by value procedure. It does not pass any information back to the main program.
Instead, it displays its information on the screen.

Procedure Demo4 is a call by reference procedure. This procedure breaks up S1 and return parts of it in
S1, 82, and S3. After this procedure is called, S1 contains the part of the string before the pattern, S2
contains the pattern, and S3 contains everything after the pattern.

If you are going to pass large data types in a program, you may want to use a call by reference procedure
rather than a function. The reason is that in a call by reference procedure, a point (that points to the data
structure) is passed rather than the whole data structure (which is what happens with a function). Thus this
technique saves time and stack space.

Following is the Demonstration program:

PROGRAM Demo (input, output);

Const
maxstring = 20; {maximum string length is 20}
emply =" ' {20 spaces}

Type

string = array [1..maxstring] of char;
Var
S1, 82, 83 : string;
i:integer;

Update ... Kyan July/August Issue Page -4

{The following function is an include file on the Kyan Pascal disk. String A1 is searched to see if it contains string A2.
It it is, the location of the first character the string A2 is returned. If it isn't, a zero is returned. For example, if A1 is
‘that theory is not viable at this time' and A2 is 'viable', the function INDEX (A1, A2) will return the value 20 which is the
position of the first letter of A2 in A1.}

FUNCTION Index (VAR A1, A2: string): integer;
VAR
I, J, K, L:integer;
BEGIN
| := Maxstring;
WHILE ((A2[l]=' YAND (I <> 1)) DO | :=1-1;
K:=0;
REPEAT
J=1;
L=1;
WHILE (J <= 1) DO
BEGIN
IF (A1[J+K] <> A2[J]) THEN L = 0;
= J+1;
END;
K:=K+1;
UNTIL ((L = 1) OR ((I+K) > Maxstring));
IF(L=1) THEN
Index =K
ELSE
Index :=0;
END;

{The next function is an include file on the Kyan Pascal disk. It returns the length of the string passed to it.}

FUNCTION Length (VAR Af1: String): Integer;

VAR
I: Integer;

BEGIN
| := Maxstring;
WHILE ((A1[l]=" Yand (I<>1)) DO | := I-1;
LENGTH := ;

END;

{The next procedure is also an include file on the Kyan Pascal disk. It copies part of A1 into A2, as specified by | (the
position in A1 of the first character copied) and J (the number of characters copies to A2).}

PROCEDURE Substring (VAR A1, A2: String; ,J: Integer);

VAR
K: Integer;
BEGIN
FOR K := 1 TO Maxstring DO A2[K] :=" ;

b=1-1;
FOR K :=1TO J DO A2[K] := A1[l+K]
END;

Update ... Kyan July/August Issue Page-5

{This next function return a value TRUE if S2 is in S1, otherwise it returns a FALSE.}

FUNCTION Demo1 (S1, S2: String) : Boolean;
VAR
Result : integer;
BEGIN
Result := Index (S1, S2);

IF Result = 0 THEN {If result = 0, then S2 is not in S1}

Demo1 = FALSE
ELSE

END;

Demot := TRUE {If result <> 0, then S2 is in S1}

{The next function returns an integer equal to the number of times S2 appears in S1. It will not work if the first

character in S2 is a space.}

FUNCTION Demo2 (S1, S2: string): Integer;

VAR
Result : integer;
Dem : integer;
BEGIN
Result := Index (81, S2);
Dem := 0;
WHILE Result <> 0 DO
BEGIN
Dem = Dem +1;
S1[Result] :=" "
Result := Index (S1, S2);
END;
Demo2 := Dem;
END;

{This procedure prints out the position and length of S2 in S1}

PROCEDURE Demo3 (S1, S2: String);
VAR
Result : integer;
BEGIN
Result := Index (S1, S2);
Wiriteln (S1: length (S1));
Writeln (‘position: ', result : 2);
Wiriteln ('length: ', length (S2) : 2);
END;

{if S2 is in S1, this procedure will return everything before the first occurrence of S2 in S1 (in S1), everything after the
first occurrence of S2 in St (in S3), and S2 itself (in S2). If S2 is not in S1, then S1, S2, and S3 are unchanged. For
example, if S1 is 'Gumby and Pokey live' and S2 is 'and (plus 17 spaces), then Procedure Demo4 will change S1, S2,
and S3 into the following: S1 will be 'Gumby’, S2 will be 'and’, and S3 will be 'Pokay live'. All three will be padded with

spaces after the last letter.}

PROCEDURE Demo4 (Var S1, S2, S3: string);

VAR

Position, len, p, | : integer;

temp : string;
BEGIN

Position := Index (S1, S2);

IF Position <> 0 THEN

BEGIN
len := length (82);

Update ... Kyan July/August lssue

Page-6

p :=1;1:= Position -1;

Substring (S1, temp, p, I);

p := position + len; | := maxstring - p +1;
Substring (S1, S3, p, I);

Substring (S1, S2, position, len);

S1 :=temp

END;
END;

BEGIN {Main program)]
S1:=empty; S2:=empty; S3 = empty;
S1 :='Gumby and Pokey live';

S2 ="and B

IF Demo1 (S1, S2) THEN {Boolean function instead of Boolean expression}
Wiriteln ('Demo1: It's there!’);

Writeln;

Writeln ('Demo2: ', Demo2 (S1, S2));

Writeln;

Writeln ('Demo3: ');
Demo3 (S1, S2);
Writeln;
Writeln (‘Before Demo4:');
Writeln ('S1: ', 81);
Writeln ('S2: ', S2);
Writeln ('S3: ', S3);
Writeln;
Demo4 (S1, S2, S3);
Writeln ('After Demo4: ');
Writeln ('S1: ', S1);
Writeln ('S2: ', §2);
Writeln ('S3: ', S3);
END.

Binary Search Tree Data Structure
By Sonja Newell

A very fundamental Data Structure in Pascal is the Binary Search Tree. It is a widely used and talked about
structure so perhaps many of you have heard of it before. This structure is useful when we have a set of
records so large that it is impractical to use each element of the set as indices into arrays. An example
would be a set of possible identifiers in a Pascal program.

Each node in the tree is a record or element in the set. The important property of a binary search tree is
that all elements stored in the left subtree of any node are all less than the node itself and all elements
stored in the right subtree are greater than the node itself. This makes for a fast search of your elements in
a set.

A tree is made up of the "root" and it's "children”. A node with no children is called a leaf. The "height" of
the tree is the number of steps it takes to locate an element in a set. In order to keep the example simple |
will use elements defined as integers when drawing a picture of the set.

Update ... Kyan July/August Issue Page-7

The tree is first initialized to NIL. Then the first element becomes the root:

coore (3)

NIL NIL
Children are inserted, with larger numbers to the right and smaller numbers to the left:

Height = 3
Leaves are nodes 1,7, 12, 15 To delete node 10 where the
the leftchild is NIL, just replace

10 with 13.

To delete node 3 where
the rightchild is NIL, just
replace 3 with 1

NIL NIL NIL NIL N NIL NIL NIL

The leaves of the tree are easy to delete, but what happens when you try to delete a node with both
children? This is why the DELETEMIN procedure is necessary. It works like this: Let's say we want to
delete node 6. In the last statement of procedure DELETE we call DELETEMIN with a pointer to node 8
(the rightchild). The leftchild of 8 is not NIL, therefore DELETEMIN is recursively called with a pointer to
node 7 (the leftchild).” Node 7 has no leftchild and consequently node 6 is replaced by node 7 and the
binary tree property still holds.

After deleting nodes 3, 10, and 6 we get a tree which looks like this:

NIL NIL NIL NIL NIL NIL NIL

Update ... Kyan July/August Issue Page-8

I have written this program to demonstrate a binary search tree using a list of phone numbers. This is a very
simplified example of trees. Notice the recursive procedures in this program. If you want to get
complicated you can learn about other tree structures, such a ternary trees with more than two children, or
how to balance a tree so all the nodes don't skew off to the left side and nothing on the right side of the
tree.

| have once again used the book DataStructures and Algorithms by Aho, Hopcraft, and Uliman. Published
by Addison-Wesley Publishing Company.

PROGRAM Phones (Input, Qutput);

(* This program demonstrates a binary search tree using a character array as the key field
You can enter names and phone numbers into a record and put that record into the
tree, find a record in the tree, or delete a record from the tree. *)

TYPE

Name = ARRAY[1..20] of CHAR;

Phnumber = ARRAY[1..8] of CHAR,;

PhSet = ANodetype

Nodetype = RECORD
element: Name;
phone: Phnumber;
Leftchild, rightchild: PhSet

End;

VAR
PhoneSet: PhSet;
Person: Name;
Number: Phnumber;
ch: CHAR; -

FUNCTION Member (MemN: Name; MemA: PhSet): BOOLEAN;
BEGIN (* Recursive function which checks for the element in a binary tree *)
IF MemA = NIL THEN
Member:= FALSE
ELSE IF MemN = MemAA*.element THEN
Member:= TRUE
ELSE IF MemN < MemA*.element THEN
Member:= Member(MemN, MemAA leftchild)
ELSE IF MemN > MemA®*.element THEN
Member:= Member(MemN, MemAA rightchild);
END; (* function Member *)

Update ... Kyan July/August Issue Page-9

PROCEDURE insert (N: Name; Num: Phnumber; Var A: PhSet);
BEGIN (* Add a record to the set *)
IF Member(N, A) = FALSE THEN
IF A= NIL THEN
BEGIN
NEW(A);
A*.element:= N;
A* phone:= Num;
AA rightchild:= NIL;
AA leftchild:= NIL;
END;
ELSE IF N < A*.element THEN
Insert(N, Num, A*.leftchild)
ELSE IF N > A*.element THEN
Insert(N, Num, A rightchild);
END; (* procedure Insert *)

PROCEDURE Deletemin (VAR N: Name; VAR Num: Phnumber; VAR A: PhSet);
BEGIN (* Deleting the smallest element *)
IF A7 leftchild = NIL THEN
BEGIN
N:= A*.element;
Num:= A* phone;
A:= A*rightchild; (* replace the node pointed to by node 'A’ by its right child *)
END;
ELSE
Deletemin(N, Num, A*.leftchild);
END; (* procedure Deletemin *)

PROCEDURE Delete (N: Name; Num: Phnumber; VAR A: PhSet);
BEGIN (* Removes node from the set *)
IF Member(N, A) = TRUE THEN
IF A <> NIL THEN
IF N < A*.element THEN
Delete(N, Num, AA leftchild)
ELSE IF N > A*.element THEN
Delete(N, Num, A*.rightchild)
ELSE IF (A*.leftchild = NIL) and (A*.rightchild = NIL) THEN
A:=NIL
ELSE IF A leftchild = NIL THEN
A:= A rightchild
ELSE IF A rightchild = NIL THEN
A:= A? leftchild
ELSE BEGIN
Deletemin (N, Num, A4 rightchild);
A’ element:= N;
A* phone:= Num;
END; (*else™)
END; (* procedure Delete *)

Update ... Kyan July/August Issue Page - 10

PROCEDURE Find (N: Name; A: PhSet);
BEGIN
IF Member (N, A) = TRUE THEN
Begin
If N = A*.element then
Writeln ('Name: ',A*.element:20,'PH#: ',A* phone:8)
Else If N < A*.element then
Find (N, AA leftchild)
Else If N > A*.element then
Find (N, A*.rightchild);
End (* If member *)

ELSE
Writeln (Name is not in the set');
END; (* procedure Find *)

BEGIN (* Main Program *)
PhoneSet:= NIL; (* set the pointer to NIL *)
ch:="#; (* setflag ")
While ch <>'S' do
Begin
Writeln (‘Do you want to E)nter, F)ind, D)elete, or S)top?");
Readin (ch);
If ch <> 'S' then
Case ch of
‘E":Begin
Writeln('Enter a name and a phone number);
Readin(Person);
Readin(Number);
Insert(Person, Number, PhoneSet);
End; (* 'E'*")
'D":Begin
Writeln('Enter name to delete');
Readin(Person);
Delete(Person, Number, PhoneSet);
End;(*'D'*)
'F':Begin
Writeln('Enter name to Find');
ReadIn(Person);
Find(Person, PhoneSet);
End; (*'F*)
End; (* case ch of *)
End; (* While ch *)
END. (* program Phones *)

Assembly Language Programming

PROGRAMMING IN ASSEMBLY LANGUAGE WITH KYAN PASCAL 2.0
Article #3
by John R. Fachini

This installment of the assembly language column marks a change in the direction the column will be
taking. Instead of trying to make half of each column for beginners and half for more advanced users, I'm
going to select a topic of interest each issue and investigate exactly what's what with it. Usually both
novices and experienced programmers will benefit. | don't mean to leave the beginners out in the cold;

Update ... Kyan July/August Issue Page - 11

this column, in a bi-monthly format, is too short to teach beginners anything they can't learn from a good
6502 book. | will, however, do my best to answer questions concerning the Kyan assembler and compiler
if you write.

The topic I've chosen for this issue was suggested by Tom Osber in San Francisco, California. He wanted
to know about the AS (6502 assembler) that is provided with the Kyan Pascal 2.0 package. This
discussion will include working examples of assembler directives and macros also.

The Kyan AS (6502 assembler) provided with Kyan Pascal 2.0 is included as part of the package for two
reasons.

1. To permit the programmer to include assembly code in Pascal sources, so
that after the compiler has generated its macros, everything can be assembled
into machine language.

2. To provide the user with a stand-alone, high power, easy-to-use assembler
which adds to the programming capability with version 2.0.

In a future column we'll look at exactly how the compiler generates the macros which represent your Pascal
program; for now we'll pursue using the assembler as a stand-alone facility.

At this point I'm going to assume a couple of things: first, that you are familiar with assembly code, and
second, that you are familiar wit some of the terminology associated with assemblers. If you're not, get out
your Kyan Pascal 2.0 manual and read chapter 5.

In any stand-along application, the assembler must first know the address of where the program will be
loaded and executed. This is accomplished using the ORG statement:

ORG $800 ;Program will load and run at memory location $800.

(Remember that only labels can start in column 1.) The ORG has told the assembler to generate machine
code that will execute starting at $800 in main memory. The remark to the right of the ORG statement is
separated by a semi-colon (;). This is a good programming practice: always remark code, especially code
that is special purpose.

| said a second ago only labels can go in column 1. True and false. Remarks can also go in column 1, as
long as they start with a semi-colon. Some assemblers use an asterisk (*) in column 1 to represent a
remark. We use the asterisk for something more important than that. Remember: only semi-colons are
used to protect remarks.

The next directive of interest is the EQU directive. EQU assigns values to labels. Very often this makes for
very easy reading of assembly language programs. For example, compare the next two lines:

JSR $FC58 :Call Monitor ROM clear screen routine
JSR CirScrn :Same as above

Obviously CirScrn is a lot more obvious than "$FC58". There's another good reason for using labels in
your program. If you decide to move your assembly code to another operating system, you only have to
change one label definition and re-assemble your source code. If you reference memory locations by
address (ex. $FC58), you'll have to change every reference to it before moving your code to another
system.

Note: labels can be any length, but only the first 6 characters have "significance”. For example, the labels
“FlagltDone" and "FlagitUndone" are considered the same by AS since "Flaglt” appears in both. The
assembler also ignores the cases of characters, i.e., "XYZ" is the same label as "xyz".

Update ... Kyan July/August Issue Page - 12

The next two directives are used when you need to generate tables of bytes or words in your assembly
language code. Observe:

Data DB 1,2,3,4,5
ow $4000,ClrScrn

The "Data Byte" (DB) and "Data Word" (DW) directives generate bytes in memory according to what follows.
The above declarations would generate the following bytes at memory location "Data”:

Data: 1 2 3 4 5 00 $40 $58 $FC

Notice that the "word" (2 byte) definitions are generated lo byte, hi byte. This convention is used on the
6502 micro processor and subsequently is maintained by the assembler whenever words are generated.

At times it is necessary to know the lo byte or the hi byte of a label value. This can be done using the >,<,
and # directives:

LDX #>ClrScrn ;Load X with #$58 (lo byte)
LDY #<ClrScm ;Load Y with #$FC (hi byte)

These directives will prove very useful later on.

The "Data Storage” (DS) directive will reserve the number of bytes indicated in the object file. For example:
DS 6

will skip 6 bytes in the object file being generated.

The next two directives allow you to generate character codes as tables in memory. They are "ASCii"
(ASC) and "STRing" (STR). These directives perform the same operation with one exception: the string
declared by STR starts with a length byte (the number of characters in the string); ASC defines one byte
per character but does not generate a length byte. For example:

Info ASC 'HELLO' ;Generate 5 bytes corresponding to the
;ascii codes of the characters HELLO

More STR 'HELLO' ;Generate 6 bytes:
; firstbyte =5
;remaining 5 bytes are the ascii codes of the
;characters HELLO

Another important assembler character is the * (asterisk). The asterisk represents the ‘current value of the
assembler's program counter’. In other words, the * represents the hexidecimal value of the memory
location in which the next instruction generated by the assembler will be put. The initial value of the * is set
by the ORG directive.

The last directive we'll talk about in this issue is the MACRO directive. Macros are code segments which
can be installed in the source code by referencing the macro name instead of typing the lines of code the
macro is defined as. Another powerful feature of macros is their parameter passing ability. You can define
a macro and use "parameters” to make the macro code being generated specific to the memory locations
or labels you need to reference in “this" case of the macro in memory. For example:

PriChar MACRO ;print a character
LDA #&1 ;Load A with first parameter in macro list
ORA #$80
JSR Cout
ENDM ;Mark END-of-Macro

The &1 represents the first parameter in the list used by the assembly code source. In the program,
saying:

Update ... Kyan July/August Issue Page-13

PrtChar A
would generate assembly code as follows:

LDA #A
ORA #%$80
JSR Cout

Remember that Macros are NOT subroutines! They only save time if the same code is used many times.

There are more directives to be discussed, but these are enough to digest for now. Next, we'll put all of
these directives to use in a useful utility program.

Anyone who has ever had a bad experience with a floppy diskette knows how aggravating they can be.
They tend to die at exactly the worst time possible. If you have a hard drive and are performing a backup of
it, a bad diskette can ruin the entire procedure. So what I've got here is a program which will scan a disk and
check for bad (unreadable/unwriteable) blocks.

Editor's Note: John's program is too long to print in this issue of the newsletter. If any of you would like a copy, just
send a stamped self-addressed envelope to Update ... Kyan. We will send you a copy of the 7 page listing.

Programming Contest Winner

Mr. Lester McCann from Madison,Wisconsin sent us a great program which speeds up the DRAW and
PLOT procedures of Kyan's HiRes.l file. The following describes his entry and lists the new routines to be
included in a HiResALT.| file. We suggest you replace the appropriate routines in the HiRes.I file on your
Kyan Pascal disks.

HGR -- This routine consists of a single line of machine code. All this routine does is call the Applesoft
ROM routine located at $F3E2, which displays hi-res page 1 and clears it.

TIX - This routine is identical to the TX routine provided by Kyan in the file HiRes.l with a couple of
comments added. It toggles two locations; the first sets text mode, and the second sets the text screen.

PLOT(X1. Y1, COLOR) -- this routine plots points on the hi-res screen. The format is the same as the
HiRes.l PLOT routine, but the COLOR parameter is used differently. PLOT makes use of the Applesoft
point-plotting subroutine to place a colored dot on the screen. Therefore, it uses the color numbering
sequence familiar to users of Applesoft BASIC:

Color # Color Color# Color
0 Black1 4 Black2
1 Green 5 Orange
2 Violet 6 Blue
3 White1 7 White2

To use PLOT, the X and Y coordinates of the point to be plotted are passed in, along with the desired color
of the dot (in the range 0-7 given above). Notice that due to the different sequence of color values used
by this version of PLOT, programs written to use the Kyan color sequence but recompiled to use
HiResALT.l may have some color problems. If this is a serious problem, a short piece of code can be
inserted at the front of the PLOT routine to convert Kyan color values to Applesoft color values. PLOT is
rather heavily commented; anyone who has read and understood the section on assembly language
programming in the Kyan manual should have no trouble following it. Location $F457 is the start of the
plotting subroutine.

Update ... Kyan July/August Issue Page-14

DBAW(X1, Y1, X2, Y2, COLOR) - This routine is used to draw lines on the hi-res screen. it makes use of
the Applesoft ROM line drawing routine located at $F53A. As in PLOT, the color values are expected to
be Applesoft values (PLOT actually takes care of setting the desired color). At first glance, it may seem silly
to be calling PLOT to plot the first endpoint of the line. This is done to satisfy the built-in drawing routine,
which assumes that the first endpoint of the line is already plotted on the screen. The drawing routine then
takes the second endpoint and connects it to the first with a line of the given color.

When writing these routines, | tried to keep three things in mind - speed, size, and compatibility. 1 wanted
these routines to be faster than their Kyan supplied counterparts, smaller than the Kyan routines(HiRes.|
requires 10 blocks of disk space; HiResALT.I needs only 3), and compatible with the calling semantics of
the Kyan routines. | gave priority to speed and size, which explains a couple of shortcomings. First, the
color sequence used is the Applesoft sequence instead of the Kyan sequence. Depending on your point
of view, this could be an advantage of these routines; if you're a former BASIC programmer, the old
sequence is quite familiar. On the negative side, the same value gives one color in these routines and may
give quite another in the Kyan routines. However, as mentioned previously, it can be changed with a small
section of code. Second, there is no range checking done on the parameters of the PLOT and DRAW
routines. This means that if a program calls these routines and passes an illegal value, it is possible that the
program and perhaps the entire operating system will crash. Adding range checks is not a difficult task, but
it would add quite a bit of code to the routines, and would slow them down considerably. As | was looking
for speed and small size, | chose to leave out range checking.

PROCEDURE HGR;
Begin
#A
JSR $F3E2 display page 1 & clear it
#
End;
PROCEDURE TX;
Begin
#A
LDA $C054 ;set page 1
LDA $C051 ;set text screen
#
End,;
PROCEDURE PLOT(X1, Y1, COLOR: INTEGER);
Begin :
#A
STX T
LDY #5
LDA (_SP)Y
TAX ;X has color (0-7)
JSR $F6EC ;set color
LDY #9
LDA (_SP)Y
TAX ;X has LSB of X1
INY
LDA (_SP)Y
STA _T+1 :store MSB of X1
LDY #7
LDA (SP)Y ;accumulator has LSB of Y1
LDY T+t Joad Y with MSB of X1
JSR $F457 ;plot point (X1, Y1)
LDX _T
#
End;

Update ... Kyan July/August Issue Page- 15

PROCEDURE DRAW(X1,Y1,X2,Y2,COLOR: INTEGER);

Begin
PLOT(X1, Y1, COLOR); (* plot starting point of line *)
#A
STX _T
LDY #7
LDA (SP),Y
STA _T+1 ;store LSB of Y2
LDY #10
LDA (. SP)Y
TAX ;X has MSB of X2
DEY
LDA ((SP)Y ;accumulator has LSB of X2
LDY _T+1 ;load Y with LSB of X2
JSR $F53A plot to (X2, Y2)
LDX _T
#
End;
#A
_UsesHiRes
#

PROGRAM TRY(Input, OQutput);
Var
1,J: Integer;
ch: Char;
HIRESALT.I
Begin
HGR;
for l:= 0 to 279 do
forJ:=0to 159 do

PLOT(, j, 3)
read(ch);
TX;
End.
Speed comparisons: HIRESALT.| HIRES|
: color=3 color=5
52.0 sec 53.1 sec
#A
_UsesHiRes
#
PROGRAM TRY(Input, Output);
Var
|,J: Integer;
ch: Char;
Begin
HGR;
for I:= 0 to 279 do
DRAW(, 0, |, 159, 3);
read(ch);
X,
End.
Speed comparisons: HIRESALT.I HIRES|
‘ color=3 color=5
5.4 sec 21.5 sec
Update ... Kyan July/August Issue Page- 16

Letters

| am pleased to see such great response to my plea (and John's too) for you subscribers to write us in last
months newsletter. | enjoyed ALL the comments (good or bad), suggestions, questions, and programs
you sent in. So before | go any further, here is an example:

Thomas Buehner of Berlin, West Germany writes:

"When | have output words on the printer (with the help of PR.]) and | am switching
back to an 80 column screen (also with PR.l), the screen is blank (as it does with DOS’
PR#3 statement). In Nibble (April 1986. p115, MicroSPARC, Concord, MA) | found the
following hint: "To return to 80 column mode without clearing the screen under
ProDOS, type:

PRINT CHR$(4); "PR#A$C307"."
When working with Kyan Pascal and KiX, a similar solution should be possible.
Unfortunately, | don't know anything of ProDOS’ internals. Could any of the readers
help? And - a hint | read in the German Kyan "fanzine" (G. Foltin: Rest-Reboot-Bug.
In: Kyan Rundschreiben #2 (15-May-86), Mr. George Foltin found out that KIX does not
reboot any longer after hitting ctrl-reset, if you take the following provisions:

Boot from disk 2, side 2 (BASIC.SYSTEM)

BLOAD KIX.SYSTEM, A$2000, TSYS

CALL -151

20B4: 20 6F FB (here PWRUP would be destroyed)
BSAVE KIX.SYSTEM, A$2000, L2183, TSYS...

N WON -

Tom Donofrio from Ottawa, Ontario writes:

| have uncovered a potential problem with the assembler when a Pascal program which
contains assembly functions or procedures, is compiled. If you use the same label in
two or more of these functions or procedures, you will get a MULTIPLY DEFINED
SYMBOL ERROR. This can be quite annoying because, for instance, if you use the
INCLUDE file HiRes.l in your program, you will not be able to use the labels | or J in any
of your assembly language routines. Thus, two routines which behave perfectly well by
themselves might run into problems when combined together in the same program. It
seems to me that provisions for local labels should be provided. In the meantime, |
have resorted to using as few labels as | can get away with.

| would like to make a suggestion to other users of Kyan Pascal Plus. As you know.,
the program disks come with Apple's ProDOS FILER program. This can be used
instead of the KIX system for basic file manipulation. My suggestion is to dump it and
go out and buy Central Point Software's Copy I+, version 6.0 or higher. These guys
were producing intuitive, easy to use software long before the Macintosh came along.
The program called UTIL.SYSTEM on the Copy ll+ disk is the best ProDOS disk utilities
| know of. It does all that FILER does and much more, plus it only occupies 53 disk
blocks. | have placed this program on my KYAN.PASCAL disk along with as many KIX
commands as | could fit and found that it works well in the KIX environment. The only
problem !'ve found is that you have to warmstart the system in order to get back into
KIX from UTIL.SYSTEM. A fix for this would be welcome.

Editor's Note: This will be fixed in version 1.1 of KIX due out this month.

Update ... Kyan July/August Issue Page - 17

Cheryl Thompson of Omaha, Nebraska writes to us about her RAMWORKS [l Expansion card:

The following boot disk was designed after reading information accompanying the
RAMWORKS Il Expansion card, and the Kyan Pascal manual. Start with a ProDOS
initialized disk, volume name Kyan.Pascal. Next copy (in order) ProDOS,
BASIC.SYSTEM, and PRODRIVE for the desktop Expansion disk accompanying
RAMWORKS Il. Next copy KIX.SYSTEM, P.OUT, and A.OUT from the Pascal system
disks to the boot disk you are creating. You will need to rename these files with a
different volume name and use an intermediate disk as you can't copy from one disk to
another disk with the same volume name. Next create a subdirectory named BIN. Then
copy the following files from the Pascal system disks using the pathname of
KyanPascal/BIN: STDLIB.S, AS, ED, PC, FILER, and CD. Finally create and save the
file called "startup”. This program Is listed in the RAMWORKS i1l book. The only

change required is that you must insert KIX.SYSTEM into the program instead of
APPLEWORKS.

This disk can then be used as your boot disk. It will automatically boot Pascal and load
the extra memory. It should not be used by beginning Kyan Pascal users as the disk
does not have room for the HELP file or files such as QUIT. It does contain most of the
programs that you will need during program production. The PRINT program will have
to be obtained from the USER disk. | have been using this system for a month now and
have had no problems. I[f someone does have a problem or has a better idea please let
me know. Thank you for your consideration, and your help on the phone that got me
started towards solving this probiem.

Well, Cheryl, as you know, we try our best to answer phone calls right way or get back to our customers if
we don't know of a solution immediately. | think you have some very useful information for our readers here
a nd, if anybody would like to comment on Cheryl's boot disk set-up, we will be more than happy to print it in
the next newsletter. It is nice to hear we could help you out. Thanks to everyone for writing.

Editors Note

We would like to thank all of you who returned the reader survey card
included in the last issue. If you havent, there's still time to make your
opinions known. Please fill out the card and return it today. In the next
issue we will publish a summary of what people had to say.

Update ... Kyan July/August Issue Page - 18

UPDATE ... KYAN

Kyan Software Inc. September/October Issue
1850 Union Street #183 Volume 1, Number 6
San Francisco, CA 94123 © 1986 Kyan Software Inc.

Apple Edition

WHAT'S NEW?

Finally -- the New, Improved Apple II!!!!!

The long-awaited 16-bit Apple IIX will be formally announced by Apple Computer this month. Due to our
non-disclosure agreement with Apple, we have been unable to tell you much about it (and still can't until they
formally announce it on September 18). However, we have had two of the prototypes since the first of the year,
and I can guarantee that you are going to love the new machine. The next issue of the newsletter will contain
extensive coverage of the new machine and the products which Kyan will be introducing to support it. In the
meantime, let us wet your appetites a little.

The Apple IIX is based on the 65816 microprocessor running at 3 MHz (3 times faster than the current Apple
II). It will operate in three modes -- straight 6502 emulation; fast 6502 emulation (3 MHz); and 16-bit mode.
Almost all existing Apple II software will run in one or both of the 6502 modes, and you can expect developers
to roll out updated versions of existing packages and some totally new products which will run in 16 bit mode.
The standard IIX includes a detached keyboard (like the Mac PLUS), high resolution color graphics, a dedicated
sound chip, 128K of ROM (you MouseText and MouseGraphics programmers will find the runtime modules in
ROM!), and a capacity for more than 4 meg of RAM (units will be shipped with 256K). Apple will also
announce an upgrade program which allows Apple II owners to upgrade their systems by replacing the
motherboard. The October issue of InCider will contain a full description of the Apple IIX.

Kyan has been using the prototypes to develop a new version of KIX, a new macro assembler, a modified Pascal
compiler, and modified programming toolkits for the machine. We will provide full specifications and exact
availability dates in the next issue of the newsletter. All of your Kyan Pascal code written to date will port
directly over to the new machine. If you think your Pascal routines are fast now, just recompile them with our
new 16-bit compiler and run them at 3 MHz! Then try to figure out how you are going to slow them down
again!

Toolkit VI Code Optimizer

The Code Optimizer Toolkit is designed for the advanced programmer who needs to reduce the code size of an
application program and/or increase its runtime speed. The Toolkit consists of two modules -- the Code
Optimizer and Source Code for the Kyan Runtime Library. The Optimizer performs two major functions:

1. It modifies the intermediate macro file generated by the compiler ("P.OUT") so that the
Assembler generates "Program Specific Code" (i.e., code which includes only those
Runtime Library routines which are specifically required by the program).

2. Itreplaces certain combinations of compiler-generated macros with optimizer macros
which shorten code size and increase the runtime speed of the application program. (The
areas most improved by the Optimizer are global variable accesses and record field
calculations.)

Update ... Kyan September/October Issue Page - 1

The Optimizer can reduce the size of a program by more than fifty percent and, in some cases, almost the double
execution speed. The following results were achieved using the Code Optimizer on the Sieve of Erotosthenes.

Code Size 129K Bytes 3.1K Bytes 9.8K
Runtime Speed 15 seconds 5 seconds 10 seconds

Source code for the Runtime Library also offers the programmer the following advantages:

1. The separate Kyan Pascal Runtime Library is not longer required on the disk. Now the
application and the Pascal Runtime Library routines are combined in a single executable
file.

2. The programmer can customize library routines (written in assembly langauge source
code) to optimize performance and/or meet the specific needs of an application program.

The Code Optimizer Toolkit is a valuable tool for those programmers who are writing large applications and/or
who are using MouseText, MouseGraphics, or Advanced Graphics routines in their programs. The Toolkit
requires Version 2.0 of Kyan Pascal and can be used on any Apple IT with 64K It retails for $149.95 (plus
shipping).

COMPUTER GRAPHICS: A Programming Approach

This 445 page textbook written by Steven Harrington and published by McGraw-Hill is the perfect
accompaniment to Kyan's Advanced Graphics Toolkit. It provides the hands-on experience and basic
information needed to implement, modify, and use a computer graphics system. The book is built around
detailed language independent algorithms for a graphics system and follows the standards proposed in the
Graphics Standards Planning Committee's CORE system. By using this standard of basic graphics capabilities,
the book provides a solid foundation for more advanced techniques. It includes coverage of raster graphics and
discusses interactive techniques, enabling the reader to learn methods of graphical input as well as output. In
addition, general 3D viewing is treated to familiarize the reader with the CORE system approach to viewing
three-dimensional objects. Numerous problems and experiential exercises are included to enhance
comprehension of the material. .
For those users of the Advanced Graphics Toolkit who don't want to miss the additional support provided by
this great textbook, you can order it by calling Kyan or mailing your payment. The price is $36.95 (plus 4.50
for shipping and handling).

UPDATE

Programming Contest

I believe we were right in our conclusion that there are some great programmers using Kyan Pascal. We have
again received many valuable programs from you. Just as a reminder for the new subscribers of Update ...
Kyan, we will pay each winner of our programming contest $50.00 in cash. But, our staff wants to ask you to
do them a big favor. It would be great if you would submit your programs on disk rather than as a listing.
Since we receive so many listings from you, we have problems entering all of them in order to run them. Thus
it would be greatly appreciated if you would copy your programs on a disk.

This month's winner of our programming contest is Tom Donofrio. His winning entry is printed in the
Assembly Language section of this newsletter.

Update ... Kyan September/October Issue Page - 2

Software Revision Status

Product Revisi
Kyan Pascal 2.02 (A) (See below)
KIX 1.02 (no change)
System Utilities Toolkit 1.00 (no change)
MouseText Toolkit 1.00 (no change)
AdvancedGraphics 1.00 (no change)
TurtleGraphics 1.00 (no change)
MouseGraphics (available 10/15)
Code Optimizer 1.00 (just released)
Changes to Kyan Pascal in 2.02A:

a) SEEK now handles up to 16 million bytes in a file.

b) Integer multiplication now correctly handles overflows.

¢) Addition greater than 32767 now results in an arithmetic overflow.

d) Handling of local and global variables has been improved; functions can
now be called that generate values which can be directly written to a text file.

e) Recursive creation of files now works.

f) When using global files, a procedure which creates a local file now leaves the
global reference numbers intact (previously, they were destroyed).

IMPORTANT NOTE REGARDING PRODUCT UPDATES: Due to the volume of product update
requests and the increasing costs associated with handling them, Kyan must implement a new policy regarding
updates. Effective September 1, 1986, the following policy is in effect:

Within 90 days of purchase, customers may receive a product update at no
charge by returning the original Kyan source disk to Kyan. After 90 dayvs,
customers may update their software by returning the original Kyan disk
and i

We regret this change in policy but hope you understand the need for doing so.

Reader Survey Results

The response to the reader survey in the June/J uly issue of Update... Kyan has been great.
The survey has proved to be a valuable source of information for us. In the future, we definitely will consider
the indicated areas of interest in our product development as well as in the design of the newsletter.

We thought that you would be interested in learning what other readers of the newsletter are interested in and so
we are publishing the results.

Update ... Kyan September/October Issue Page - 3

New Product Interests

Very
Product Interested
Languages
Modula-2 43%
Cc 51
ProLog 17
LISP 20
FORTRAN 23
BASIC 9
ADA 23
Toolkits
Animation 38%
More Utilities 55
Data Base 43
Text Editor 36
AppleWorks
Macros 20
Pinpoint Macros 14
Telecom. 39
Newsletter Interests
Type of Article
General Interest
Technical
Pascal-oriented
Assembler-oriented
Programming Tips
Program Listings
Tech. Notes/Bugs
Industry Trends/Gossip
How people use K.P.
Software Development,

Licensing, marketing

Do _you own a modem?

YES
NO

Somewhat Not Total

Interested Interested Qmmsm Respondents
29% 12% 17% 248
34 7 8 257
30 25 28 246
37 27 17 236
25 45 7 241
17 66 9 234
31 27 19 239
38% 13% 11% 225
37 2 7 241
32 15 10 239
33 23 9 236
19 39 22 228
22 31 34 222
31 18 2 234

. » f’

Many Some None

20% 69% 11%

77 22 2

82 18 0

52 45 3

57 38 5

43 56 1

78 21 1

21 61 18

20 67 13

20 63 17

169

97

If yes, are you interested in using EMail to communicate with Kyan?

YES 108
NO 57
Update ... Kyan September/October Issue Page - 4

If nQ, are you planning to purchase 2 modem in the next 6 months?

YES 40
NO 57

If no, why don't you want to purchase a modem?

Too expensive 25
Too difficult to use 2
Just don't see value 30

We have selected 10 winners from the list of those returning the survey questionnaire. Each of the following
have won a free programming toolkit.

Ralf Augspurger, Neckarsteinach, West Germany
Matthew J. Chichester, Aurora, CO.

Rolf Kewitz, Bonn, West Germany

John Mills, Zachary, LA.

David E. Newman, New York, N.Y.

Matthew Palmer, Raleigh, N.C.

Michael W, Rutherford, Houston, TX.

Jeff Schumaker, Gibsonburg, OH.

John Wengert, Syracuse, N.Y.

Craig Winters, Merrit Island, FL.

Congratulations, you will receive a letter from us asking which toolkit you would like. And thanks again to all
of you who mailed in your reader survey card.

PASCAL PROGRAMMING

Using a Kyan Pascal (Version 2.0) Program as a .SYSTEM file

by John Fachini .

Many programmers have used Kyan Pascal to write 'startup’ or ProDOS .SYSTEM files. A .SYSTEM file is a
special type of file because it is the first file executed after PRODOS is loaded and in place.

Kyan Pascal is a great language with which to develop sophisticated .SYSTEM files. However, the process
which must be followed to get the volume booted and the KYAN .SYSTEM file running is not clearly as
documented in the manual; it is the purpose of this article to clarify and provide a useful program as an example
of this process.

When you boot a diskette, the hardware in the Apple loads block #0 of the diskette and attempts to execute it.
When the disk has been formatted (using KIX's FORMAT or the ProDOS FILER), this block of code searches
the volume directory for a file named ProDOS. If it cannot find it, the code displays the message:

++ UNABLE TO LOAD PRODOS *

Assuming everything is OK to this point, the PRODOS file is loaded and relocated in segments into the
language card area of main memory, leaving the rest of main memory free for code and data.

Now that the PRODOS file has control of the system, it searches the volume directory it came from for a file
with a name ending in .SYSTEM and which has a file type of $FF (225 decimal). Once this file is found, it is
loaded starting at location $2000 in main memory and then executed.

Update ... Kyan September/October Issue Page - 5

The great part about using Kyan Pascal to write your .SYSTEM file is that you have the power of Pascal,
assembly language, and all of the Kyan Toolkits at your fingertips; once you get your stand-alone disk booted,
the world is all yours.

The program I have included with this article is a good example of how to use Kyan Pascal to generate a
SYSTEM file. However, as you are typing the listing in, you'll probably have to change the procedure named
"INIT_ARRAY". Here's what you should do for INIT_ARRAY:

Every .SYSTEM file you want to display as an option on the startup screen should have
it's filename assigned to an element in the StartupFiles array. Be sure that that all of the
unused entries are initialized to '‘Blanks’, and the integer variable MAX is the number of
entries to display from the array data you have provided.

The program is very straight forward. The important part is the procedure to follow when implementing this
.SYSTEM file on a stand-alone disk.

1. Boot into KIX as usual.
2. Change the directory (CD) to one to work in (we'll call it WORK):
% CD WORK
3. Type in the program and save it as file "BOOTUP.P"
4. Compile the program:
% PC BOOTUP.P
Format a floppy disk. For now, name it "/TESTVOL":
% FORMAT (6,1) /TTESTVOL
6. Copy the BOOTUP program onto the new volume, renaming it with a .SYSTEM
suffix at the same time:
% CP BOOTUP /TESTVOL/BOOTUP.SYSTEM
7. Go back to the home volume:
% CD
8. Copy PRODOS and the Pascal LIB also onto the disk:
% CP PRODOS BIN/LIB /TESTVOL

“

That's it for testing purposes. Now boot your /TESTVOL and see for yourself, Once you're convinced, you can
either use the demo program or use the precedure for your own startup program.

Enhancements

-

I am sure that the program I have written won't replace Catalyst or MouseDesk. It could use a few
improvements I have left out. For example:

- Use the System Utilities Toc;lkit's GETDIR routine to scan the boot volume's directory for all
SYSTEM files (this way you can add more without modifying the source code).

- Set the program up to run in 80 columns.

- Search subdirectories for SYSTEM files also.
I am glad to see people are really stretching Kyan Pascal to help them with all their system's tasks (not just
programming, but system maintenance, control, and organization). Between KIX and Pascal, you have a lot of

resources to call on. I love to see what you clever folks are up to.

Anyway, here's the program. See you at the Assembly Language column:

Update ... Kyan September/October Issue Page - 6

#a

_SystemFile

#

PROGRAM Demo_System_File;

CONST
Blanks = '
Left Arrow = 8;
RightArrow = 21;
DownArrow = 11;
UpArrow = 10;
ReturnKey = 13;
EscapeKey = 27;
MaxFiles = 10;

", (* 15 blanks *)

TYPE
Name String = ARRAY [1..15] OF CHAR;

Name_Array = ARRAY [1..MaxFiles] OF Name_String;

VAR
StartupFiles : Name_Array;
Index,Max : INTEGER;
Quit : BOOLEAN;

PROCEDURE HOME;
BEGIN
#a
stx _t
jsr $fcS8
ldx _t
#
END;

PROCEDURE GOTOXY (x,y:INTEGER);
(* This is a quick and dirty 40-column gotoxy routine *)
BEGIN
#a
stx _t
Idy #7
1da (_sp),y
sta $24
Idy #5
Ida (_sp),y
sta $25
jsr $fc22
ldx _t
#
END;

PROCEDURE INVERSE;
BEGIN
#a
1da #63
sta $32
#
END;

PROCEDURE NORMAL;

BEGIN
#a
Ida #$ff
sta $32
#
END;

FUNCTION KEYPRESS:INTEGER;
VAR key:INTEGER;
BEGIN
#a

Idy #5
Kp 1da $c000

bpl Kp

bit $c010

and #$7f

sta (_sp),y

iny

lda #0

sta (_sp).y
#

keypress:=key
END;

PROCEDURE INIT _ARRAY;
(* Put your system file name in here! *)
BEGIN
StartupFiles[1] :='KIX.SYSTEM F

StartupFiles {2]
StartupFiles(3]
StartupFiles(4)
StartupFiles[5] :
StartupFiles([6] :
StartupFiles[7] :
StartupFiles[8] :
StartupFiles[9] :

:='APLWORKS.SYSTEM' ;

:='BASIC.SYSTEM
:='BACKUP.SYSTEM';

=Blanks;
=Blanks;
=Blanks;
=Blanks;
=Blanks;

StartupFiles[10]):=Blanks;
Max:=4; (# of files in list)
END;

PROCEDURE SHOW_MENU;
VAR loop:INTEGER;
BEGIN

HOME:

WRITELN ('Kyan Pascal v2.0 Startup demonstration'); WRITELN;

WRITE ('Use the arrow keys to scroll through the');

WRITELIN ('list; press RETURN to select or ESC to');

WRITELN (‘exit to ProDOS...");WRITELN;
WRITELN (" System File ');
WRITELN (')

FOR loop:=1 to 10 DO WRITELN(' ",StartupFiles[loop])

END;

PROCEDURE HIGHLIGHT (index:INTEGER);
BEGIN

GOTOXY (3,index+7);

INVERSE;

WRITELN (StartupFiles [index]);

Update ... Kyan

September/October Issue Page - 7

NORMAL beq x3
END; inx
iny
PROCEDURE CLEAR (index:INTEGERY); sta $280,x
BEGIN cpy #15 ;end of array entry?
GOTOXY (3,index+7); bne x2
WRITELN (StartupFiles[index}) x3equ*
END; stx $280 ;new length
jsr _mli
FUNCTION PROCESS_MENU :INTEGER; db $c4 ;get file info
VAR index, oldindex, ch :INTEGER; dw Parmlist
done :BOOLEAN; bne x9 ;error
BEGIN Ida ParmList+4
index:=1; cmp #$ff ;system file?
REPEAT bne x9
HIGHLIGHT(index); Idy #0
ch :=KEYPRESS; x4 equ *
IF ((ch=LeftArrow) OR (ch=DownArrow)) THEN Ida RelCode,y
BEGIN sta $be00,y srelocate loader call
oldindex:=index; iny
index:=index-1; bne x4 ;move one page (more than enough)
if index = O then index:=Max; jst $be00 ;use JSR in case of an error
CLEAR(oldindex) x9equ * serror
END; Ida #1
Done:=(ch=ReturnKey); Idy #5
Quit :=(ch=EscapeKey); sta (_sp),y ;flag true boolean
UNTIL (Done or Quit); ldx _t
PROCESS_MENU:=INDES #
END; IF error THEN
BEGIN
PROCEDURE EXECUTE (VAR PathName:Name_String); GOTOXY(0,20);
VAR error:BOOLEAN; WRITE(Cannot load. SYSTEM file. Hit RETURN";
BEGIN READLN
#a END
stx _t END;
jsr_mli #a
db $c7 ;getprefix ParmList db 10
dw GetPfx dw $280
bne x9 ds 15
Idy #1 GetPfx dbl
xlequ* dw $280
iny ;
Ida $281,y RelCode equ * ;this code gets moved to be$00
cmp #/ jsr_mli
bne x1 db $c8 ;open
iny dw OpenFile
sty $280 ;length of boot volume's name beq *+3
Idy #6 s ; retumn if error
1da (_sp).y 1da OpenFile+5 sreference number
sta _t+1 sta ReadFile+1
iny sta CloseFile+1
lda (_sp),y jsr_mli
sta _t+2 ;address of pathname db $ca sread
Idy #0 dw ReadFile
ldx $280 pha ;save result
x2equ* jsr_mli
Ida (_t+1),y db S$cc ;close
cmp #32 ;blank marks end of word in array dw CloseFile
Update ... Kyan September/October Issue Page - 8

pla

beq *+3 ;NO erTor
Its
ldx #$ff
txs reset the stackpointer
jmp $2000 ;and execute theSYS file
OpenFile equ *-RelCode+$be00
db3
dw $280
dw$b000 ;open file buffer address
db 0
;ReadFile equ *-RelCode+$be00
db 4,0
dw $2000,$ffff,0
CloseFile equ *-RelCode+$be00
db 1,0
#
BEGIN
REPEAT
INIT_ARRAY;
SHOW_MENU;
index:=PROCESS_MENU;
IF NOT quit THEN EXECUTE(StartupFiles[index]);
UNTIL quit
END.

ASSEMBLY LANGUAGE PROGRAMMING

PROGRAMMING IN ASSEMBLY LANGUAGE WITH KYAN 2.0
Article #4
by John R. Fachini

This article will cover an issue may programmers have raised with Kyan Pascal in the past--that of runtime
errors and being unable to trap them. Like any other language, Pascal has a great number of potential fatal
errors. In most cases, like numeric overflows or stack overflows, the error MUST be fatal since the
environment in which the program is running has been corrupted by the error.

Other errors, however, are non fatal. Most of these errors are related to disk access. Trying to RESET a file
when it doesn't exist is not always fatal; often, it would be useful to trap this error as it occurs. But, since this
isn't BASIC, there is no ONERR GOTO construct. That's why we have assembly language built into Kyan
Pascal, and why we have spent a lot of time developing toolkits for you folks. The System Utilities Toolkit
provides more than two dozen ProDOS functions and procedures. OK -- I am not advertising, just making a
point. There is a solution. But...

The program which I have included with this column contains a function named IORESULT. In order to keep
life simple, it returns the 5 most common ProDOS error messages as integers between 1 and 5. Zero denotes
no error. IORESULT does not tell you what type the file is, if it is open or not, if is is damaged or not, or
anything else. IORESULT answers the question - "Is the file in the correct directory on the correct volume
accessible at this time?"

The demo program uses an array which will verify the IORESULT values. Change the array values in the
INIT_ARRAY procedure and give the test program a try.

I hope this solves some problems. I realize it isn't a catch-all but one thing at a time.

Update ... Kyan September/October Issue Page - 9

If you haven't read the article in this newsletter about .SYSTEM files go read it and come back. Good. Now, I
made references in that article about hearing from you people and what you are doing. I have received a few
letters and I appreciate the good words. I don't mind hearing complaints or what you might think of as 'stupid
questions’. No question is stupid. Those of you who have talked on the phone with me know (at least I hope)
that I take everyone seriously and I do my best to help solve your problems. I can't debug programs for you,
but if it relates to Apple hardware or the Pascal, KIX, or Assembler environment, I am happy to help. I am
almost tempted to give you my CompuServ number, but I am afraid too many of you will recognize me from

the CB as the guy with the lamp shade on his head. (Just kidding).

Here's the program. See you in November!

PROGRAM IORESULT_DEMO;
CONST
MAX=6;

TYPE
Pathstring = ARRAY [1..65] OF CHAR;
Patharray = ARRAY [1..MAX] OF Pathstring;

VAR
PathName : Pathstring;
Paths : PathArray;

FUNCTION IoResult (VAR Pathname:Pathstring): INTEGER;
(* This functions returns a simplified error code for checking the existance of a file.
Values returned are:

0 noerror inx
1 file not found cpx #5 ;no more to check?
2 subdirectory not found bne IOE2
3 volume not found beq IOE9 ; ACC=error code already
4 invalid pathname IOE3 equ *
5 volume appears damaged inx
any other value returned is the txa ; A=new error code for this function
ProDOS MLI Error code *) IOE9 equ *
Idy #5
VAR Result :INTEGER; sta (_sp),y ; give function value to RESULT
BEGIN 1da #0
#A iny
stx t sta (_sp),y
Idy #9 ; address of the PathString jsr FixPath ; put the PathString back the way it was
lad (_sp),y ldx _
sta_t+l #
iny IoResult:=Result
Ida (_sp),y END;
sta_t+2 #a
jst ConvPath ; make into a ProDOS Pathname PList db 10
lda _t+1 ; put the pathname's address in the parameter list ds 17
sta f’List+1 IErr db $46,$44, $45, $40, $5a
Ida _t+2 ;
sta PList+2 ConvPath equ *
jsr_mli Idy #64 ; count chars backwards
db $c4 ; Get_File_Info CPlequ*
dw PList Ida (_t+1),y
beq IOE9 ; no problem... cmp #32 ; blank?
Idx #0 : table index bne CP2 ; no: found last char in the pathname
IOE2 equ * dey
cmp IErr,x _bpl CP1
beq IOE3 Iny ; make y=0
tya
sta (_t+1),y ; makes length of pathname zero
Update ... Kyan September/October Issue Page - 10

CP2equ*

PROCEDURE TEST_RESULTS;

Iny ; actual path length (* This routine calls IO.RESULTS for each pathname
sty _t+4 in the Paths and prints the resulting error code. Use this
dey to test for yourself the IORESULT routine *)
CP3equ *
lda (_t+1),y VAR loop:INTEGER;
Iny BEGIN
sta (_t+1),y ; move string data forward by one byte WRITELN(*** IOResult Error Demo ***)); WRITELN;
dey WRITELN(Function values returned: ');
dey WRITELN(')
bpl CP3 WRITELN(2 Directory not found’);
iny » y=)...this is where the length byte goes WRITELN(3 Volume not found’);
lda_t+4 WRITELN(4 Invalid pathname’);
sta (_t+1),y WRITELN(5 Volume appears damaged');
s ; done for now WRITELN(other ProDOS Error code'); WRITELN;
| WRITELN(Error / Pathname');
FixPath equ * FOR loop:1 TO MAX DO
ldy #0 WRITELN(IORESULT (Paths[loop]):3,’ " Paths[loop));
Ida (_t+1),y ; path length byte END;
sta _t+4 ; save it
iny PROCEDURE INIT_PATHS;
FP1equ * (* Initial pathnames in the Paths array *)
lda (_t+1),y BEGIN
dey _ o Paths[1]:="hard 1/anyfile
sta (_t+1),y ; move the string back this time Paths[2]:="/hard1/bin/anyfile
iny Paths[3]:="/vol.not.here
Iny Paths[4]:="this.pathname.is.too.long
dec _t+4 Paths[5]):="&.invalid.name
bpl FP1 Paths[6]:="hard1/bin
s END;
#
BEGIN
PROCEDURE HOME; HOME;
BEGIN ‘ INIT_PATHS;
#a TEST RESULTS
stx _t END.
jsr $fc58
ldx _t
END;

Shape Routines
by Tom Donofrio

Tom Donofrio from Ottawa, Ontario has sent us a group of routines (to be put in an include file named
Shapes.i) that allow you to draw shape tables using Kyan Pascal. Programs using it require the files
HiRes.i and BLoad.i to be included (BLoad is from the System Utilities Toolkit).

The first routine to be called should be SetShapes, which sets aside some room in high memory and
initializes the shape table pointer. It then loads the specified shape table into memory (via BLoad). You can
use any of the hundreds of vector shape tables that are presently available for the Apple, as long as they are
smaller than 4096 bytes (you can always check the size of a table by looking at its extended directory).

The next procedure is SetRSC, which sets the rotation, size, and color of the shape The following two
procedures, DrawShape and XDrawShape, are analogous to the Applesoft DRAW and XDRAW commands.

We are also including a demo program from Mr. Donofrio which tests the shape drawing routines. It loads the
shapes from a file named ASCIL.Shapes.

Update ... Kyan September/October Issue Page - 11

(* SHAPES.I *)
(* ROUTINES FOR USING SHAPE TABLE. *)

FUNCTION SETSHAPES(SHAPETABLE:PATHSTRING):INTEGER;

(* THIS FUNCTION SETS UP THE POINTER TO THE SHAPE TABLE AND LOADS IT
INTO MEMORY. IT RETURNS A MLI ERROR CODE. THE CALLING PROGRAM
MUST HAVE THE "BLOAD.I"™ ROUTINE FROM THE UTILITY TOOLKIT
INCLUDED, AND IT MUST DECLARE "PATHSTRING". *)

VAR
ERR:INTEGER;

BEGIN
7N
DSECT ; SET ASIDE 4K OF HIGH
TABLE “EQU $B00O sMEMORY FOR THE SHAPE
DS $1000 ; TABLE.

DEND

LDA #>TABLE ;LSB OF SHAPE TABLE ADDRESS.
STA $E8

LDA #<TABLE ;MSB OF SHAPE TABLE ADDRESS.
STA $E9

#
ERR :=BLOAD(SHAPETABLE,0,-20480);
SETSHAPES:=ERR;

END;

PROCEDURE SETRSC(ROT,SCALE,COLOR:INTEGER);
(* SET ROTATION, SCALE AND COLOR OF NEXTSHAPE. *)

BEGIN
f#a
STX T
LDY #5
LDA (_SP),Y ;COLOR
STA _T+1
INY
INY
LDA (_SP),Y ;SCALE
STA $E7
INY
INY
LDA (_SP),Y ;ROT
STA $F9
LDX _T+1
JSR $F6F0 ;SET COLOR.
LDX _T ;RESTORE X REGISTER.

s SAVE X REGISTER.

#
END;

Update ... Kyan September/October Issue Page - 12

(*==

===========z=======s=== =%)

PROCEDURE DRAWIT(NUMBER,XPOS,YPOS:INTEGER ;X:BOOLEAN);

(* USED BY THE DRAWSHAPE AND XDRAWSHAPE ROUTINES. THIS PROCEDURE
DOES THE ACTUAL SHAPE DRAWING. *)

BEGIN
A

STX
LDY
LDA
STA
INY
LDA
STA

INY

INY
LDA
STA
INY
LbA
STA
INY
LpA
LDY
CLC
CMP
BCS

ASL

STA
LDX
LDY
Lpa
JSR
LDY
LDA
STA
INY
LDA
STA
CLC
LDA
ADC
TAX
LDA
ADC
TAY
Lpa
CMP
BEQ
LpAa

T ;SAVE X REGISTER.
#5

(_SP),Y ;X-->(DRAW OR XDRAW?)
_T+1

(_SP),Y ;YPOS
_T+2

(_SP),Y ;LSB OF XPOS.
_T+3

(_SP),Y ;MSB OF XPOS.
_T+4

(_SP),Y ;SHAPE NUMBER.
#0

($E8),Y ;COMPARE SHAPE NUMBER TO TOTAL NUMBER OF SHAPES.
ENDSHAPE ;DON"T DRAW IF THE SHAPE NUMBER IS LARGER

; THAN THE TOTAL NUMBER IN THE TABLE.

;OTHERWISE DOUBLE THE SHAPE NUMBER SO

;IT CAN BE USED AS AN INDEX TO THE

_T+5 ;ADDRESS OF THE SHAPE.
TT+3 ;LOAD THE REGISTERS
TT+4 WITH THE SCREEN COORDINATES
TT+2 ;THE SHAPE WILL BE DRAWN AT.

$F411 ;SET THE CURSOR POSITION.

T+5

($E8),Y ;GET LSB OF RELATIVE SHAPE ADDRESS
_T+6

($E8),Y ;GET MSB OF RELATIVE SHAPE ADDRESS
_T+7
_T+6 ;NOW DO A TWO BYTE ADDITION

SE8 sWITH THE LOCATION OF THE

;START OF THE SHAPE TABLE

_T+7 ;TO GET THE ABSOLUTE

$E9 ;ADDRESS OF THE SHAPE AND

, ;PUT IT IN THE X AND Y REGISTERS.

0
T+l ;DRAW OR XDRAW?
DRAW

$F9 sROT

Update ... Kyan September/October Issue Page - 13

JSR §F65D ;XDRAW THE SHAPE.
JMP ENDSHAPE

DRAW LDA $F9 ;ROT
JSR $F601 ;DRAW THE SHAPE.

ENDSHAPE LDX T ;RESTORE X REGISTER.
#

END;

(*= sc==m= = *)

PROCEDURE DRAWSHAPE(NUMBER ,XPOS,YPOS : INTEGER) ;
(* DRAW A SHAPE *)

VAR
X:BOOLEAN;

BEGIN
X:=FALSE;
DRAWIT(NUMBER,XPOS,YP0S,X);
END;

PROCEDURE XDRAWSHAPE(NUMBER,XPOS,YPOS:INTEGER);
(* XDRAW A SHAPE *)

VAR
X:BOOLEAN;

BEGIN
X:=TRUE;
DRAWIT(NUMBER,XPOS,YPOS,X);
END;

Update ... Kyan September/October Issue

Page - 14

A
_USESHIRES
#

PROGRAM SHAPETEST(INPUT,OUTPUT);

(* TEST OF SHAPE DRAWING ROUTINES *)

TYPE
PATHSTRING=ARRAY([1..65] OF CHAR;

VAR
I,X,Y:INTEGER;

#I BLOAD.I
#I HIRES.I
#I SHAPES.I

BEGIN
I:=SETSHAPES("ASCII.SHAPES
")
HGR;
SETRSC(0,1,3);
Y:=10;
X:=5;
FOR I:=1 TO 127 DO BEGIN;
X:=X+20; (* YOU MAY HAVE TO USE A DIFFERENT INCREMENT IN X
IN ORDER TO SEE YOUR SHAPES PROPERLY. *)
IF I MOD 14 = 0 THEN BEGIN;
X:=5;
Y:=Y+15; (* YOU MAY HAVE TO USE A DIFFERENT INCREMENT IN Y
IN ORDER TO SEE YOUR SHAPES PROPERLY. *)
END;
DRAWSHAPE(I,X,Y);
END;
#A .
JSR $FDOC ;WAIT FOR KEYPRESS
#
TX;
END.

Update ... Kyan September/October Issue Page - 15

LETTERS

Mark A. Smith from Pensacola, Florida writes:

"I ordered my copy of Kyan Pascal last April 86 so that I could teach myself how to
program in Pascal, mostly for the fun of it (and it is fun). I received my copy of Kyan
Pascal with the manual right away. But I also had a surprise extra, though I did not know
it at the time, for I found a disk filled with KIX files, as well as a large portion of my
users manual dedicated to KIX. Though I know nothing of UNIX, I expected a UNIX-like
operating environment as you had advertised in the March issue of inCider... Then I
received my June issue of inCider and received quite a shock. I saw an advertisement for
Kyan Pascal PLUS! Then I saw advertisements for KIX alone as an AppleWorks
enhancement. During this time, I had been learning to use KIX and growing more excited
the more I learned; but I suddenly realized that when I had order Kyan Pascal for the
Apple, what I had really received was Kyan Pascal PLUS!...Did you ship it to me as a
preannounced product to test user response??..Most importantly, I would like to know if
I am a registered owner with Kyan Software Inc. as legitimate owner of KIX? Will I be
allowed to upgrade to KIX version 1.02 if I just send in my original disk with a request?

Dear Mark, in fact your guess is correct. We did ship the early versions of Kyan Pascal with the KIX
environment included with the purpose of testing the user response. Also, you are allowed to receive an upgrade
to KIX 1.02, as anybody is who has the original source disk. Further, you are also entitled to order Appleworks
KIX for the special offer of $20.00 (plus 4.50 for shipping and handling).

Eugene Vamos of La Canada, California, writes:
"..How can I get back issues of Update,..Kyan #2, #3, and #4?...

Regrettably, we have run out of most of our previous issues. Many new subscribers want to get their hands on
back issues, but we only print enough to send to the subscribers and have few ,if any left over.

Update ... Kyan September/October Issue Page - 16

UPDATE ... KYAN

Kyan Software Inc. November/December Issue
1850 Union Street #183 Volume 2, Number 1
San Francisco, CA 94123 © 1986 Kyan Software Inc.

Apple Edition

WHAT'S NEW?

What We're Doing With the IIGS....
by John R. Fachini

By now I am sure all of you have heard/read/seen lots and lots of things about the

Apple IIGS, so I am not going to waste your time telling you about its technical qualities,
its great sound and graphics, or its speed. What I will tell you about is what we at Kyan
Software, Inc. have been working on with our two GS computers since January.

Kyan has great plans for 1987 and the Apple IIGS is a large part of those plans. The
number of products we are planning to release next year will more than double our current
product offering. Even better, the product quality will be increasing, but price won't be.
We are trying to improve technical support with the introduction of a technical support
bulletin board sometime in early spring. We will be posting helpful hints, bug fixes, and
other handy items which will save you time and hopefully aggravation as the adjustment
from the Apple Ile world to the IIGS world slowly takes its toll on you, the fearless
programmer.

There is a lot to say, so let me start by stating something I learned a few weeks ago at the
Fall 1986 Apple Developers Conference in San Jose, California. The event was excellent
and I had a great time. Idid notice, however, there is a great lack of development tools
aimed at those programmers who have used the Apple Ile and Ilc. Iknow of more than
half a dozen cross compilers for Macintosh to IIGS programs. But there is no Pascal for
Apple II people to start using now which will still work when they get their IIGS!?
WRONG!

If you want to get a head start on your IIGS application, grab some Kyan toolkits and get
to work. Once our GS products are released, you can move your Pascal sources over and
re-compile. There you will have a 16-bit version using all of the super features of the GS
without any extra waiting or sweating the lack of available GS computers.

This leads me to my second topic....our product list for the IIGS. Beginning in 1987, we
will phase in what we believe will be the most powerful development environment and
programming tools available for the Apple IIGS. That's a big statement, but we haven't
been busting our tails for months to take it slow now.

The introduction schedule looks something like this:

Update ... Kyan November/December Issue Page - 1

First Quarter, 1987
1. Kyan Pascal/GS with KIX/GS
2. System Ultilities (DOS and misc.)
3. Advanced Graphics Toolkit
4. Human Interface Toolkit (MouseGraphics)

Second Quarter, 1987
5. Sound Toolkit (including speech)
6. Assembler/Linker
7. Kyan Pascal with separate linking

Thir rter, 1
8. Kyan "C"

Needless to say, there is lots of power in the above list. And that's just for starters (I guess
I won't be taking a vacation for a while). Let me clarify what must be some fuzzy points
about the above list.

Kyan Pascal plus KIX for the GS will be the first release. It will be our ISO Pascal (with
extensions like STRINGS!!!!!!!!), using 32-bit integers, SANE floating point support, a
full power 65816 in-line assembler, and the power to let you use all of your memory for
program space (automatic segmentation), all memory for dynamic space, and up to 64 K of
global variables.

KIX will have a 'new' look. It will have "history" support (use the up and down arrows to
scroll through your last 50 typed lines of input), the AppleWorks flashing underline input
routine, command scripts (you know, batch files?), "alias” commands, error and standard
redirection, input redirection (for talking to KIX from a disk file or a modem), and lots of
other great things.

The toolkits are pretty clear. The existing Apple //e and //c MouseGraphics and Mousetext
Toolkits will become the Human Interface Toolkit on the GS. It will include code for the
'Mac' look and feel; it will also include user friendly design suggestions with examples.

The sound toolkit is my personal favorite. Save a lot of disk space for your speech files. I
guess if things go well, you'll be able to code something like:

SPEAK (Vocab[1],2)
and hear words come out of Pascal. Amazing.

The Assembler/Linker will let you generate all of the types of modules the GS System
Loader supports. The Linker will let you have libraries of routines out of which the linker
will copy only those routines you need. That includes routines of Pascal code, assembly
code, C code, etc. (since they all compile into 65816 code anyway....)

The second release of Kyan Pascal/GS will be a special version with language
enhancements which will let you compile library modules, etc. Life gets interesting at that
point.

Most of the people I talk to in the course of my technical support duties ask about a

C compiler. Well, it's official. There will be a GS C compiler from Kyan Software. The
implementation of C will be a full K&R implementation with extensions and special GS
constructs. Watch future issues of Update...Kyan for more details.

Update ... Kyan November/December Issue Page - 2

To give you a peek at some other potential releases, let me mention two products (and write
if you want either one or both for the GS and Ile/c):

- A programming editor (context sensitive even!)
- A LISP interpreter/compiler.
Let us know what you think.

As soon as the GS is an established product, we will be starting the Update.. Kyan GS
version of our bi-monthly newsletter. I have already been warned that I'll be the editor and

(so far) only contributing writer. So don't be bashful--send us some code, folks (even if
it's not on the GS).

All of this hype and excitement and I still haven't mentioned the Apple Ile and Ilc product
lines. Well, don't fret gang, we're taking care of you, too. In March there will be a KIX
upgrade and a Pascal Version 2.1 release. Pascal will get a faster assembler and strings. If
you want more, send me a letter telling me what you want. Speak up! Speak also up about
what you want for the GS!

UPDATIE

LIB Copyright Information
Because of the speed and stand-alone ability of its machine code, many people use Kyan
Pascal to write programs to be distributed in the public domain (PD). There is some
confusion as to how a person places their program in the public domain because of the
Pascal Library (LIB) file, which is a copyrighted product of Kyan Software, Inc.
If the file is to be distributed on disk (such as one in a user group PD software library),
copy the LIB file there as usual, but you must acknowledge Kyan's copyright on the disk
label with the following message:

LIB Copyright ©1986 Kyan Software, Inc.
Also insert this message in a prominent location in the documentation.

If the file is to be distributed via a BBS, you may put the LIB file up separately, providing
that the above © message is in the documentation to the program.

PASCAL PROGRAMMING

Programming Contest

If you have ever checked out a complete copy of ProDOS, you may have played around
with a game on the disk called Animals. This month's Programming Contest winning

Update ... Kyan November/December Issue Page - 3

program, by Eugene Vamos of La Canada, California, is similar to the ProDOS Animals
BASIC program. Mr. Vamos also wrote a descriptive article to accompany his program;
his efforts have been rewarded with fifty dollars, as are all of the Programming Contest
winners (Hint, hint! Send in those programs/routines!).

This program demonstrates the portability of Pascal--it can be compiled by any Standard
Pascal compiler with no changes whatsoever--it was first written for Atari computers, but
also runs when compiled by our Apple and Commodore compilers.

The article follows and the program listing can be found at the end of the newsletter.

Aniral

by Eugene Yamos

Programming Contest Winner

Animal has won this . -.
issue's $50 prize. z

And, no, this is nota (§ind
picture of the author .:if:

What is Animal? you say. Well, Animal is a question and answer game that looks like it
has touches of artificial intelligence. The user thinks of an animal (or anything else for that
matter) and the program, by means of yes and no questions, tries to guess it. As one plays
the game again and again, it provides better, more accurate guesses as it learns from its
mistakes.

Programming Techniques Used

Animal uses a binary tree to store the questions and the guesses. The variable Toggle of
type Decision determines if the program should ask a question or guess at the answer
when it arrives at a particular record node. At initialization, only three nodes exist: the root
node with the first question, and two children nodes with guesses (Figure One).

Update ... Kyan November/December Issue Page - 4

Doeas 7l heve 1wa 7egs?

el en

Figure 1.

If the response to a question is no, the pointer moves left, but if the response is yes, then it
goes in the opposite direction, right. the program then checks what kind of node it is and
does the appropriate action (to question or to guess).

When the program guesses at the animal and gets it right, it congratulates itself (to the point
of being a bad winner). On the other hand, if it's wrong, the sore loser asks for the right
answer and for a question that, if answered affirmatively, would describe the animal. the
program stores this new information by creating two new nodes and attaching them to the
tree. the way the program does this is better illustrated by showing, not telling (Mrs.
Stinson--English 3ABS). Taking the sample tree from above, a trial run would look like
this (program output appears in regular typeface; user input appears in bold).

Q: Does it have two feet? (Y/N)
Y

G: IsitaMan?

N

What was it then?

Kangaroo

What question should I have asked?
Does it bounce?

The tree would then look like Figure 2.

Update ... Kyan November/December Issue Page - 5

Daes 71 heve twa /egs?

Does 7! haunce?
Yes

Nil

Kengeraa

Nil Nil Nil Nil

Figure 2.

This is a 'bare bones' program, and other features could be added, such as crash protection
from bad input and a save to disk procedure (that way you could save a huge disk database
of animals from alligator to zebra because saving all the animals and questions in memory
may take up too much space and you may overflow the available memory--Ed.). In time,
one could create a giant binary sequoia that would amaze and impress one’s friends (and

make the Fractal Tree, which appears on the next page, look like a mere wimpy sapling--
Ed.).

Fractal Tree

Update ... Kyan November/December Issue Page - 6

This Pascal program uses fractal mathematics (which are often used with computer
graphics) in the recursive procedure Split to make the branches of a tree in graphics mode
eight. This program is a derivative of the Fractal module from TDI Software's Modula-
2/ST GemDemo program.

One might think that it would be extremely difficult to convert the program from Modula-2
on an Atari 1040ST, which uses a 68000 microprocessor running at 8 Mhz, down to
Pascal on an Apple //e, which uses a 1Mhz 6502 (usually, it is done the other way--Pascal
programs are converted up to Modula-2), but it was fairly easy. Except for forgetful
'cockpit errors' such as forgetting to include the graphics file, the program compiled and
then ran (successfully, even!) without changes from the first translation of the program
(with me, a first-time compilation and successful execution is about as common as a
complete solar eclipse coinciding with a Boston Red Sox World Series victory). Now
that's Pascal <--> Modula-2 compatibility at its best (thank you, Professor Wirth!).

And, lest I forget, you had better have something to do while you run this program (give
your dog a bath, make dinner, etc); as you may have guessed if you know anything about
recursion, floating point, and a 1Mhz CPU, its gonna take a while, folks! What took the
68000 machine thirty seconds to do takes your 6502 machine about twenty minutes; it will
be interesting to see how long it takes the 65816-powered, 2.8Mhz IIGS to draw the whole
tree. If anybody is brave enough (and has an extra day or so), I'd like to know the time it
takes BASIC to do this program.

Watching the fractal tree draw is about as much fun as watching paint dry, but the program

uses some pretty slick techniques (fractals, recursion) and the end graphics result is fairly
decent.

The program listing appears at the end of the newsletter.

LETTERS
Is it possible to read the command line from inside a Pascal program?
Chris Keller
[75776,2400]
CompuServe

Assuming that you want to read the KIX command line and then perform commands (such
as LS, CP, etc.) ,no--the KIX environment is separate from your program. You can,
however, read your own command line using the Parse Line routine from the System
Utilities Toolkit and then perform one of the many file management commands available in
the ProDOS library of that same toolkit.

I don't understand how to use the Address and Pointer commands to get a BASIC-type
PEEK and POKE.

Clarence J. Arrowsmith
[73307,3152]
CompuServe

Update ... Kyan November/December Issue Page - 7

To do a PEEK or POKE, you don't need to use Address at all, only Pointer. First,
declare a number that you will use to PEEK andlor POKE the memory location(s):

VAR
My Loc : MInteger;
Peeker, Poker : Integer;

Next, you must assign your variable to the appropriate memory location:

My Loc := Pointer(1234);
(* You would, of course, use the proper memory location in place of 1234 *)

Later in your program, you can perform a PEEK with:
Peeker := My Loc”; (* Peeker will now hold the value in address 1234 *)
...or a POKE with:

Poker := 255; (* 255 is the number you are going to POKE into 1234 *)
My Loc” := Poker; (* This performs the POKE *)

Is there ANY way to get around input type clashes in Pascal? The most annoying thing in
the world is to be prompted for a number, enter a letter by mistake, and have the program
come crashing down into your lap.

Chris Copeland
Monroe, Connecticut

ISO Pascal requires that when a program encounters an error such as a type conflict or an
out-of-range array index, it must come screeching to a halt and report the 'fatal error’ to the
user. To get around this, design some kind of ‘bullet-proof input routines; for example,
have separate procedures such as Read_Int, Read_Real, etc.

NOT-SO-SUBTLE HINT: What a great idea for our ongoing programming contest!
Remember that each issue, one person who writes a nice routine or program will be chosen
to receive fifty dollars and have his or her code published on these very pages.

Here are my submissions to Update...Kyan for this month:
First a procedure...

Procedure ExitProgram;

{ this procedure brings a program to }

{ an orderly halt by calling the }

{_quit routine in StdLib.s }

{ ProDOS's quit call will close all }

{ files. }

Begin
#A

Update ... Kyan November/December Issue Page - 8

#

IMP

End;

_QUIT

And a Control-Reset patch. This patch to StdLib.s will make Control-Reset either quit to
KIX or ProDOS or it can make a program restart (be careful with open files if the program
is restarted). Put this patch at the beginning of StdLib.s.

»

’

; Control-Reset to _quit (or _start) patch

.
’

.
b4

LDA
STA
LDA
STA
EOR
STA

#> QUIT ;change " QUIT" to" _START" to...

$3F2 ;make program restart...
#< QUIT ;instead of quitting
$3F3

#$AS

$3F4

Hope this code proves useful.

Jim Luther
Overland Park, Kansas

Many readers will doubtless find these routines very handy.

How can I get some detailed information on the runtime library (LIB) and/or macro library
(StdLib.s)?

(various users)

This is one of the more common questions we receive here at Kyan. The Code Optimizer
Toolkit contains full source code to the runtime library and a special optimized macro

library.

Update ... Kyan November/December Issue Page - 9

Program Animal(Input,Output);
Const Blank=' ;
(* Twenty Five Spaces ¥*)

Type String=Array[l..25] of Char;
Decision=(Answer ,Ask);
Pointer="RecPtr;
RecPtr=Record

Left,Right:Pointer;

Question:String;

Animal:String;

Toggle:Decision
End;

Var Root,Mover,Tree:Pointer;
Entry:Char;
Temp,Name,Quest:String;
Part,Whole:Boolean;

Procedure Init;

Begin

New(Tree); (* Set up Root node*)
Root:=Tree;

Mover:=Tree;

Tree”.Toggle:=Ask;

Tree”.Question:='Does it have two feet ;
Tree”".Animal:=Blank;

New(Tree” .Right); (*Set Up Right Branch¥*)
Tree”.Right".Toggle:=Answer;

Tree” .Right”.Question:=Blank;
Tree”.Right”.Animal:="Man

Tree” .Right".Left:=Nil;
Tree”.Right".Right:=Nil;

New(Tree”.Left); (*Set up Left Branch*)
Tree”.Left”.Toggle:=Answer;
Tree”.Left”.Question:=Blank;
Tree”.Left”.Animal:="Rat ;
Tree”.Left”".Left:=Nil;
Tree”.Left".Right:=Nil;
Tree:=Root;
Mover:=Root;

End;

Update ... Kyan November/December Issue

Page - 10

Procedure AskQuestion;

Var Response:Char;

Begin
Writeln('Q: ',Mover”.Question,' (Y/N)'");
Readln(Response);

Case Response of
'Y':Mover:=Mover".Right; (* Move to the left *)
"N':Mover:=Mover“.Left (* Move to the right *)
End;
End;

Procedure SayGuess;

Var Response:Char;

Begin

Part:=False;

Writeln('G: Is it a ',Mover”.Animal);
Readln(Response);

Case Response of
'Y','y':Writeln('Ha, Ha , 1 guessed it. I win!');

'N','n':Begin
Writeln('What was it then?');
Readln(Name) ;
Writeln('What question should I have asked?');
Readln(Quest);
Tree:=Mover;
(*Move the pointer to the action¥*)
Temp:=Tree”.Animal;

New(Tree".Left);(* Create Two new nodes *)
New(Tree”.Right);

Tree”.Left”.Toggle:=Answer;
(* Move contents of *)
Tree”.Left”.Question:=Blank; (* current node to the *)
Tree”.Left".Animal:=Temp; (* new left node *)
Tree”.Left”.Left:=Nil;
Tree”.Left".Right:=Nil;

Update ... Kyan November/December Issue Page - 11

Tree”.Right".Toggle:=Answer; (* Set up new right *)
Tree”.Right".Question:=Blank; (* node with new ¥)
Tree".Right”.Animal:=Name;

(* animal guess *)
Tree”.Right".Left:=Nil;
Tree”.Right".Right:=Nil;
Tree".Toggle:=Ask;

(* Place new question ¥)
Tree”.Question:=Quest;

(* at current node *)
Tree”.Animal:=Blank;

Temp:=Blank;

Tree:=Root; (* Move pointers *)
Mover:=Root; (* back to the root ¥*)
End

End;
End;

Begin
Init;
Mover :=Root;
Writeln('Welcome to Animal, the game.');
Writeln(' In the game, the computer tries to guess the');
Writeln('animal you have thought of by asking Yes (Y)'");
Writeln('and No (N) questions.');
Writeln(' When and if the computer guesses wrong, it');
Writeln('will try to learn from its mistakes and will');
Writeln('ask you some information about your animal.');
Writeln;
Writeln;
Writeln('If you are ready, here we go!!!');
Whole:=True;
Part:=True;
While Whole=True Do
Begin
While Part=True Do
Begin
Case Mover”.Toggle of
Ask:AskQuestion;
Answer :SayGuess
End;
End;
Writeln('Do you want to play again(Y/N)');
Readln(Entry);
If Entry='N' Then Whole:=False
Else Part:=True;
End;
End.

Update ... Kyan November/December Issue Page - 12

#A
_UsesHires

#

PROGRAM Fractal_Tree;

CONST
xScaler = 1.0;
yScaler = 1.0;
Color = 63
MaxLevel = 13;
SplitAngle = 20.0;
SplitProportion = 0.22;
VAR
xMax, yMax : Real;
dx, dy,
mx, my,
CosPhi, SinPhi : Real;
Tab : ARRAY[0..20] OF Real;
Loop : Integer;
#i /Hardl/Pascal/HiRes.i
(* This is just the pathname for our system;
you should use whichever pathname your system
needs to include "HiRes.i" *)

PROCEDURE Split(sx,sy,ex,ey : Real; Level : Integer);

VAR
MidX, Midy,
O1dLen, NewLen,
CosTheta, SinTheta : Real;
i : Integer;

BEGIN (* Split *)

MidX := (sx + ex) / 2.0;
MidY := (sy + ey) / 2.0;
dx := ex - sX;

dy := ey - sy;
OldLen := Tab[Level-1] * 150.0;

Newlen Tab[Level] * 150.0;
CosTheta := dx / OldLen;
SinTheta := dy / OldLen;

Draw(Trunc(sx),Trunc(yMax - sy),Trunc(MidX),Trunc(yMax - MidY),Color);

Update ... Kyan November/December Issue

Page - 13

IF Level < MaxLevel THEN

BEGIN
Split(MidX,MidY,NewlLen * (CosTheta * CosPhi - SinTheta * SinPhi) + Midx,
NewLen * (SinTheta * CosPhi + CosTheta * SinPhi) + MidYy,
Level + 1);
Split(MidX,MidY,NewLen * (CosTheta * CosPhi + SinTheta * SinPhi) + MidX,
Newlen * (SinTheta * CosPhi - CosTheta * SinPhi) + MidYy,
Level + 1)
END (* IF/THEN *)
END; (* Split *)
BEGIN (* main program module *)
HGr ;
xMax := 279.0;
yMax := 149.0;
Tab[0] := 3.0;
CosPhi := 0.93969262; (* Cos(SplitAngle) *)
SinPhi := 0.342020143; (* Sin(SplitAngle) *)
FOR Loop := 1 TO 20 DO Tab[Loop] := SplitProportion * Tab[O0];
mx := 279 DIV 2;
my := (149 DIV 2) - 50;
Split(mx,0.0,mx,my,l);
Tx
END. (* main program module *)
Update ... Kyan November/December Issue Page - 14

UPDATE .. KYAN

Kyan Software Inc. March/April Issue
1850 Union Street #183 Volume 2, Number 3
San Francisco, CA 94123 © 1987 Kyan Software Inc.

Telephone: (415) 626-2080 CompuServe ID: 73225450 MCI ID: 298-0892
EasyLink: 62921785 Telex: 989113 KYAN SFO

Apple Edition

(Editor: David J. Rudolph)

UPDATE
Latest Software Versions
Kyan Pascal: 2.02A
Kyan Pascal PLUS
Disk 1: 2.02A
Disk 2: 1.02
System Utilities Toolkit,
MouseText Toolkit,
Advanced Graphics Toolkit,
TurtleGraphics Toolkit: 1.00
Code Optimizer Toolkit: 1.01

KIX (AppleWorks version): 1.01

All software remains unchanged since the last issue of UPDATE... KYAN, with the
exception of the Code Optimizer.

From the Editor

I would like to first take time to thank the people who responded to my request in sending
in programs that were developed using Kyan Pascal. The range of programs we received
went from those that help Audiologists ('specialists in the rehabilitation of persons with
hearing loss') with their patients to educational software. The authors, one and all,
developed great packages in their respective fields of software development. Thank you
again for participating.

Back to business though, this issue is going to deal with recursion. This seems to be a
neglected topic that has been around for years, yet computer scientists have recently (within
the past twenty years) begun to utilize its inherent power. The first program is (you
guessed it) "Towers of Hanoi," the ancient game that has regained popularity due to
computer scientists implementing it on various machines. Secondly, an excellent article by
Robert Oyung on searching techniques covers three standard methods of searching:
BubbleSort, MergeSort, and QuickSort.

Update ... Kyan March/April Issue Page - 1

PASCAL PROGRAMMING

Recursion

Recursion is an old field of mathematics that is finding many applications in computer
science, from languages driven by recursion, such as LISP, to faster ways of sorting lists,
to searching binary trees. Indeed, recursion is a very handy and powerful tool and is easily
implemented in Pascal, whereas in BASIC and FORTRAN it must be kludged since it is
not inherent in the original design of the language. Recursion, simply stated, is a way of
having a procedure call itself in order to accomplish a task. By having the procedure call
itself, it is in fact looping. :

The classic game "Towers of Hanoi' demonstrates this facet of recursive looping. In this
game we start with three pegs, or towers. Each peg normally has five disks of varying
sizes (we will use three to simplify the example) . The disks are stacked from small to
large. (See Figure 1.)

Figure 1.

The object of Towers of Hanoi is to move the stack of disks to another peg without ever
placing a larger disk on top of a smaller disk. For example, you can start by moving disk 1
to peg B; then, disk 2 to peg C; then, disk 1 to peg C, etc., etc., etc...

In this example, we start off with three disks on peg A; then, two moves later, we have two
disks on peg C. Finally, all the disks end up on peg B. After some experimentation you
will discover that whenever you move a larger disk, you must move the smaller one(s) a

total of N2-1 times. With three disks you must move the disks eight times to complete the

puzzle with the least number of moves (32-1=8). In closing, look over the Hanoi program
carefully to understand how recursive loops are made to move the disks from peg to peg.
Finally, notice how the state of a variable is saved and recalled during iterations of the
recursive loop. I hope you find the "Towers of Hanoi' an enjoyable and educational game.

PROGRAM Hanoi appears in the LISTINGS section at the end of the newsletter.

Update ... Kyan March/April Issue Page - 2

Taking a Look at Sorts
by Robert Oyung

An entry in a list is very easy to find, if the list is sorted. Our lives have been made much
easier by sorted lists. Names in a phone or address book are sorted, catalog numbers in a
library are sorted, and house numbers are sorted. Can you imagine trying to find 3612
Pine Street. without knowing that 3612 is between 3600 and 3700? No thank you.
Sorted lists are much easier to deal with.

In order to sort a list, we must do two things:
1) Compare one element with another, and
2) Switch them if necessary.

Consider a very simple list of two numbers; for example, the list: 6 1. The first step is to
compare the two elements: 6 is larger than 1. The second step is to switch them if
necessary: since 6 is larger than 1, it is necessary to switch the elements. So our list
becomes: 1 6. Easy.

Now, let's take a look at the options we have for sorting:

1. The easy way: Bubblesort is one of the simplest sorting algorithms; it is also one of
the slowest. It starts at the beginning of the list comparing each element with the next,
exchanging them so that the smaller value is on the left and the larger value is on the right.
This has the effect of moving the largest number to the end of the list. The procedure
continues by moving the second largest element up behind the largest and so on until the
list is sorted. Simple, but slow.

2. Divide and conquer: Mergesort embodies the idea of dividing a problem into smaller
pieces and working on them first. Mergesort is a recursive procedure that continually
divides a list into two parts. The first part is sorted, the second part is sorted, and then the
two lists are combined into one sorted list. Getting complicated, but faster!

3. The fastest: Quicksort. To better understand how quicksort works, lets use an example
and sort the list:

468123957
The middle element is 2. This will be our "pivot” point. Start from the left and find a
number greater than or equal to the pivot (2); that number is 4. Then start from the right
and find a number less than or equal to 2; that number is 2.

468123957
Switch those two numbers.

268143957

Now look at the elements between the two numbers we just switched.

681

Update ... Kyan March/April Issue Page - 3

Start from the left and find a number greater than or equal to 2 (the pivot). That number is
6. Then start from the right and find a number less than or equal to 2; that number is 1;
switch them.

186

There is only one element between 1 and 6 (8) so all the elements to the right of 8
(including 8) are put in another pile.

21/8643957

We sort the new pile the same way.
8643957
3 is the middle element. The two numbers to switch are 8 and 3.
3648957
Look at the numbers between the two we just switched.
6 4

We can find a number greater than 3 (the pivot) but we can't find one smaller, so all the
elements to the right of 6 (including 6) are put in another pile.

2173648957

Sort the new pile.
648957
The middle element is 8. Make 2 switches.
6479 58
6475.98

Sort the new pile.
21/3/6475/9 8
8 9

Go back and sort the new pile with the 6. 4 is the pivot.

4675
Sort the new pile.
4/6135
The middle element is 7.
657

Update ... Kyan March/April Issue Page - 4

The list becomes: 21/3/74/6 5/789

Now we only have to sort two piles (the pile with the 2 and the pile with the 6) to
completely sort the list. In the LISTINGS section of the newsletter, you will find a demo
program with the three sorts discussed above. Try them and compare their speeds.

PROGRAM SortDemo appears in the LISTINGS section of the newsletter.

LETTERS

We recieved a letter from Mark A. Smith in Pensacola, Florida,that offers some
suggestions on how to use Kyan Pascal with a RAM card. Since the price of RAM has
become very reasonable, many users are now buying these cards from various
manufacturers and are using them as RAMdisks. Mark's letter describes the process of
using a product from a specific manufacturer, Checkmate, but the process will generally be
the same no matter what company you purchase your RAM card from..

Mark writes:

An Apple //c with only one drive is very tedious when applications require disk swapping.
(For example, Pascal programming files and KIX commands). Here are just a few simple
steps of preparation, and then a few tips on using the setup. This method should work fine
on the Apple /e with a MultiRAM RGB as well, since Checkmate is famous for its real
product compatability.

Preparation:
A. Format a ProDOS disk.
B. Copy files to the front side of your disk in this order:
1. ProDOS
2. MRAM.SYSTEM -- This file is located on the back of the MultiRAM
utilites Disk 4.5, included with purchase. It creates the /MRAM disk on
the expansion board, thus it needs to be the first system file.
3. LOADMRAM.SYSTEM -- This file, on back of MuliRAM Util., is run
to load files from any ProDOS disk into /MRAM, disk after disk, until
you are done.

4. Copy Kyan.Pascal files -- I recommend: KIX.SYSTEM, STDLIB.S,
LIB, ED, PC, AS, and any include files that you use regularly.

Use of MRAM RAMdisk:
A. Boot up the front side of the disk you prepared. Here is what happens:
1. ProDOS boots up and runs MRAM.SYSTEM

Updzte ... Kyan March/April Issue Page -5

2. MRAM.SYSTEM creates the RAMdisk ((MRAM) on the expansion card,
and then runs LOADMRAM.SYSTEM.

3. LOADMRAM.SYSTEM provides a menu that allows you to copy ALL files
from the disk that is currently in the drive into the RAMdisk.

B. Use LOADMRAM.SYSTEM to copy you files on the front side of your disk.
When that task is done, flip to the reverse side and copy all of the KIX files to
/MRAM. {For those who are familar with Applesoft, you might wish to use the
BASIC program COPY.ALL found on the MuliRAM disk. It can be customized
to the exact files on your disk(s) you wish to copy to / MRAM. }

C. Exit the menu and, at the ProDOS quit routine, enter:
/MRAM/KIX.SYSTEM <Return>

D. WHAM!! No more disk swapping, or waiting for your Apple to access the disk!
It all occurs at the "speed of light" inside your computer. Well, at least at the speed
of your CPU (much faster than any mechanical drive)! And you have enough
space to develop, large sophisticated programs.

TIPS:

A. MRAM is temporary! It disappears when you shut the power off! If you
inadvertantly reset, MRAM is only disconnected. Follow the instructions in
your manual from Checkmate to re-install it.

B. Remember that ProDOS limits the number of files in a volume to 51. You

might use a directory for KIX files (a la BIN), or for you program files. COPY
II PLUS comes in handy here.

C. Keep a separate "/PROGRAMS" (volume name of your choice) disk in your

drive at all times, and regularly save your program source code to theis disk for
storage. _

I hope this is simple enough. Iknow some Kyan Pascal users may be a bit discouraged by
the relentless amount of disk swapping required for the KIX environment with a single

drive. As you can see, this is not necessary. A RAMdisk makes life much easier, and
saves a lot of time in the long run.

Update ... Kyan March/April Issue Page - 6

LISTINGS

The Towers of Hanoi

PROGRAM Hanoi;

VAR
a2,q3,q4,t:CHAR;
i, p:INTEGER;

PROCEDURE TOWER (n:INTEGER) ;
BEGIN
IF n > 0 THEN

BEGIN
t:=q3; g3:=g4; qd:=t;
Tower (n-1) ;
WRITELN ('Move ring',n:2,' from peg ',q2,"' to peg ',qg4);
t:=q2; g2:=g3; q3:=g4; qgd:=t;
Tower (n-1) ;
t:=q2; g2:=qg4; q4:=t

END

END;

BEGIN { Main }
WRITELN(CHR(12)); { clear screen }
g2:='A'; g3:='B'; qd4:='C"*;
Writeln('***************** TOWGrS Of HanOi **************');
WRITELN; WRITELN; ‘
WRITE ('How many disks would you like to move? ');
READLN (p) ;
Tower (p) ;
END. { Main }

Taking a Look at Sorts

Program SortDemo (input,output);

Const Max = 50;

Type ArrayType = array [1l..max] of integer; .
Var

i: integer;
original, Sorted : ArrayType;

{***}

Procedure BubbleSort (Var list:ArrayType;start, finish:integer;
Var comp:integer); :

{ This procedure sorts a list by repeatedly finding the
largest value and then moving it to the end of the list. }

Update ... Kyan March/April Issue Page - 7

Var i,j,temp:integer;

Begin
for i:= finish-1 down to start do
for j:= start to i do

Begin
{ See if the next element is smaller }

comp := comp+l;

if (list [j] > list([3j+1]) then
Begin { Switch the values }

temp := list([3j];

list[j] := list [j+1]);

list[j+1] := temp;

end; { if)}
end; { for }

end; { procedure BubbleSort }
{***}
Procedure MergeSort (Var list: ArrayType; left, right:

integer;
Var comp:integer);

{ This procedure divides the list in half and sorts them }

Var
middle, i:integer;
templList:ArrayType;

{***}

Procedure Merge (source: ArrayType; Var destination:

ArrayType;
indexl, boundl, index2, bound2: integer);

{ This procedure merges two sorted lists (in source) into one
sorted list (in destination) }

Var
current, i:integer;
Begin
current := indexl;
while (indexl<= boundl) and (index2<=bound2) do
begin
{ smallest value is in first list }
comp :=comp+1;
if (sourcel[index] < source[index]) then
Begin
:= source[indexl];

destination[current]
indexl := indexl+l;
current := current+l;

end else

March/April Issue Page - 8

Update ... Kyan

Begin
{ smallest value is in the second list. }

destination[current] := source[index2];
index2 := index2+1;
current := current+l;

end;

end;

for i:= indexl to boundl do

Begin
destination[current] := source[i];
current := current+l;

end;

for i := index2 to bound2 do

Begin
destination[current] := sourcel[i];
current := current +1;

end;

end; { Procedure Merge }

Begin { MergeSort }
if (left < right) then begin

midde := (left+right) div 2;
for i := left to right do
tempList [i] := list [i];

MergeSort (tempList, left,middle, comp) ; { Sort left half
}

MergeSort (tempList, middle+1,right,comp); { Sort right
half }
{ Merge the left and right halves to together }
MergeSort (tempList,list, left,middle,middle+1, right);
end;
end; { Procedure MergeSort }

{***}

Procedure QuickSort (Var data:ArrayType;
start, finish:integer;
Var comp:integer);

{ This procedure uses the recursive quick sort to sort a list
of numbers }

Var
value,left,right,temp,middle,pivot: integer;
Begin
left := start;
right := finish;
middle := (start+finish) div 2; { Find the middle of
the list }
pivot := data[middle]; { Find the value there }
repeat

While (data[left]<pivot) do

Update ... Kyan March/April Issue Page - 9

Begin

left := left+l; { Find a value large than the
pivot on the left side }
comp := comp+l;
end;
While (pivot<data[right])do
Begin
right := right-1; { Find a value smaller
than the pivot on the right side }
comp := comp +1;
end;
if (left <= right) then
Begin
temp := datalleft]; { Make sure the two
values are on different sides of the }
data[left] := datal[right]; { pivot and then
switch them }
data[right] := temp;
left := left+l;
right := right -1;
end;

until (right<=left);

if (start<right) then { Recursively sort the
right side }
QuickSort (data, start, right, comp) ;

if (left<finish) then { Recursively sort the
left side }
Quicksort (data, left, finish, comp) ;
end; { Procedure QuickSort }

Procedure PrintList (list:ArrayType);

Var
i:integer;
Begin
For i := 1 to MAX do
write (list[il]," Y
end;

{***}

Procedure GetKey;
{ wait of the user to press RETURN }

Begin
write ('Press RETURN to continue');
readln;

end;

{***}

Update ... Kyan March/April Issue Page - 10

Procedure ShowSort (Sorted:ArrayType; i:integer);

Var
comp:integer;
Begin
PrintList (Sorted);
writeln;
comp :=0;
writeln('***Sorting..."');
case i of
1 : BubbleSort (Sorted, 1,MAX, comp) ;
2 : MergeSort (Sorted,l,MAX, comp);
3 : QuickSort (Sorted, 1,MAX, comp)
end;
PrintList (Sorted);
writeln;
writeln('Comparisons: ',comp);
end;

Begin { Main Program }

for i := MAX downto 1 do { Create a decrementing list }
Originalfi] := i;
for i := 1 to 3 do begin

Scrted := Original;
ShowSort (Sorted, i)
end;
end.

Update ... Kyan March/April Issue Page - 11

0802-929 (SLv)

€ZLY6 VO ‘odsidouesq4 ues

€gL# ‘1@ans uolun 0581
‘oU] aJem}yos ueh)y

JHYML40S

lobeuepy)}sia pieH
oyl

XA

llely Sse| 1sdid

£21¥6 BIUIOJI|BD ‘00SIouUR)) UES

€8l # }931)S uoiuN 0581

21em}jos uehy

S0Qoid o1 XIX Ux3
Alewwng puewwo) XIM
XX Hesy

Xix 2inbyuod

S|UajUOY U83IDS Juld
awij/aleq WaISAS peaunes
pred uwnio) 08 alqeus

pie) uwnjo) 08 |gesia

saweuyled pPIEOP|IM MOYS
buing 1910IRYD
sajoesey) 9lbuis
Alopoang juased
Aopang Bunpiom

no
XX
TIVLSNI

wwyyppwwif—areq
080
0] 20]

HILE I LL U |

suruyied OHO3
(preopim) .
(preopim) &
(uoneinaiqqy)

(uonenaiqqy) :

$pIoJp|IM _PuB SuoneiAsIqqv

soji4 1xa) om] asedwod
(s)ap4 e ui bung e 8jed0]
Alopang e uy 4 e 8]ed0
sawnjop om| esedwo)d
saji4 om] asedwo)

8uwINjoA & aureuay
aWN(OA B Jeuwod
awnjoA e AdoD

AsoypanQq 10 oji4 B edeq
aji4 B auieuUaY JO BAOW
a4 € uud

oy & AdoD

snje)g uonoajold abueyd
8ji4 B JO S|U3IU0D ey} IS

Aopang e 9veq
Alojoang Bunpop juud
1010341(] M3N B EW
s3|l4 pue sauodalg IS
Asopang bunpopy abueyd

Z'ojy— e~ 34108
oweuyled Buis” d3HD
eweus|lj-—AI0}284p~ANI4
(pp'sp) " (ps'ss) dWO
e L a dND

Tpuswwos XN 815903

esweus (p's) AAN
sweu/ (p's)” LVWHOS
(p's) (p's) AdD

wabe!

sweuyed WY

aweu Mau aweupjo- AN
sweuyied Hd
uofeunsap— 82in0s™ dd
sweuged QOWHO
sweuyled 1YD

suww uawabeu

sweuyged HIQWY
aMd

sweuyed YIAXN
sureuyied 7
auwreuyied Q90

Spueliwioy juawabeuewy A10139I1Q]

UoNduo5ea

XEJUAS PUBWWOY)

spuewwo) XiM

66'6¥$:3IDIHd 1IVIIH G31S3IOONS

‘aJemM|jog uehy
woJj Aoanp 10 $810)S |1Rla) |ed0] Je 8jqejieAe St XM

1syndwon eiddy jo Wewapel paiaysibas
e st syJomaiddy 11V Jo Fewspe) paiaisibas e st
XINN 9Jemjjos uehy jo yewapes pasgisibal e st XIN

"sbunsy
oy Bunuud pue ‘sayy xey Buibiew ‘Aiojpeup Hsip
e jo Adoo prey e Buijuud se sbuiy yons Joj |njesn
Aewedsa s) uondo uonosipes eyl ‘(a|y el e se
indino ey} aaes “a'1) eweuyied & o} JO (reseydued
jayio Jo ‘wepow ‘iaud “6'8) ,u, Jequnu
10is peyioads e 0} pueuwwod € jo Indinoc 8y} 18p
01 nok smoje yoiym TOTDaIpay suoddns osfe XIN

‘paAow 8q O} S| 8fl) 8L 8J6UM puooas
ey} puE ‘parow eq o} 8|y ey} Jo eweuyled ey elesipul
pinom s ey ‘pepiacud eq pinom sjuswnbie
oM} ‘uealb S| puewWOD BAOW B)| "pelelep eq
o1 (peyweds eq ues suo UBY) BIOW) S8YY Jo ey eyl
jo eweuyied ayy Ajoads pinom woawnbie ey} ‘ysip €
uo sey} e1ajep 0} UsAID si puewwoo e j ‘eidwexe 104
‘PUBLIWIOD BY) YiM pajeosse (s)eweu Aloenp
J0 oy ey seuyep luswnbre ey] -eweuyied e
s xeluAs puewwod XIy eyl jo uofod TUBWNDIY eyl

‘speau olpeds
1@8w o} Ay XIM eyl jo INdino ey ezIIoisNo ued
nok ‘suondo Buisn Ag -elow pue ‘sniels uonoeioxd
o)y jo Bunsy ‘seweu ejy pezneqeydie ‘seii0lo8)p
pepue)xe Jo piepue)s Jo) suoldo sepiaoid puewwco
.S1. oyl ‘sidwexe JojJ WAyl yum pejeposse
suopdo eAey spuewwod XIM Auepw -Aem oypeds
® uj puewwos eyi wiopad o} weiboid Aunn ey
sjpnisul XeluAs puewIwod eyy jo uood SUGHO0O eyl

‘jee| pequosep ere semnn esey) (e
e Adoo 0} .49, ‘Asoaip e ISy 01,51, “6°8) exoaur
0] JUEM NOA puBLIWOD 8Y) JO BWEU pajelreiqqe eyl
s1 xejuAs puewwod XIN eyl Jo uorpod AT eui

u< sjuawnbay suondo-"Aumn
:xejuAs puewwod Buimojio)

eyl @sn nok ‘sennn esay)l Weo oL "selimn Jo
spueWWOd aYI-XINN G2 Ueyl @Jow jo SISISuoo XIN

SHIOM XD S20F MOH

1861 ‘Asenuep ‘aurzebey Japioul "

WM Inoylim
eq).upnoys siasn snoilag qno }ja; ejddy
jonquod s0goid eyl sapirord XN ‘11BI9A0.,

«YSIp piey
& uo sejy abesusw 0] sey oym euoAue o} jybis
ewsodjam ® I8 Byl SIjIN puB SpUBWIWOD
uazop om} usyj alow suigjuod Xy ‘ie ul,

o XDI
Anq pinoys nok ‘(ysip piey Jio s°'€ ysiaiun)
oalsp ysip Ajjoedes-ybiy e sapnjoul wo)shs
51 eiddy oA ji ‘XINN Pu8 SOQ-SW S8 Yons
swojsAs bBunesado [njiamod eiow jo s$2INjES}
Ausw o] ss9228 siasn sodoid sealb XIM.

-ouizebeyy sep1ou) Aq SHVIS ¥ 031VH

RN

‘suononisul Jnok Jno Aued o} SOQ0Id YiM Syiom
pue ‘sweiboid uonesydde o saunun Kiessaoau
oyl S[jed ‘puewWod eyl siaudiejul XIM ‘puBLIWOD
e Jeua nok ueym ‘(<) woid so@poid eul
jo peaisul (%) idwosd XM 8y} ees |im noAk ‘pepeoy
St X1 usym Jo] 9JElI8|Ul Mau B sI X

‘Aiowew ojui papeo) Buteq s1 SOQoId
reuy nok Buiknou ‘ueasos ybukdoo sOQoid eul 8ss
1,nok “ysip eul 100q nok uaym ‘puy "AIojoalip By}
ul paIsll SOAO0Id Pyl JLNOA “ysIp XI% 8yl eulwexa

T

noAk ueym unesado mau B jou

-swalshAs XINN Jasn-nnw ‘ebie uo Auo puno)
sann ayy jo Auew yum Jasn syl sapnoid pue
‘walsks Bunesado wXINM Yl Ul pUNO| JUWUOHAUD
jasn 8y} Jaye pappow S|)} || addy eyl
Jo} wawuonaua bunesedo paseq-sOQoid € S! XIN

SXIM st 1eym

‘spJes uoisuedxa Asowalu 1SOU UM S)Jom pue WYY
Ul JO YSIP UO S8pisal) "dJemljos paseq-sSOQold
Jaylo 1sow pue syiomalddy uyim 8|qiedwod
Sl | °G°€ YSiplun Jo ¥Slp piey e pue Kiowauw
10 b9 ised| le yum // aiddy ue sainnbas XIN

‘S301ABP
jaylo pue ssajuud o) Indino jo uoNdallpas pue
spresppm spoddns osfe 3| “swesford uoneoidde
Buiyoune| Joj weibosd NNIW © surejuod osie XN

(*o12 ‘yndino uwnjod 08/0F ‘eiep/ewl}

waysAs 1as) EMUIIIJ/3IEMPIEH ONERW
‘((sbuins sa1oeIRYD

Jo} S8y ydsJeas Jo/pue Sa|lj 1o} SII0IIAIP
yoseas) T30 1 T
‘(sewnjoa 1o sajy aidiinw usemiBq SBdUBIB|IP
11| pue a1edwod) TIWNOA PUE SJ[lJ dIedwio)
{(SHSIP Jeunso} sawn|oA

eweuas Jo ‘sjejep 'Adoo) TSOWMOA UM YIOM
‘(sey jo snieis uonossjoid ebueyd so jud
‘sweus! ‘ajojep ‘erow ‘Adod) e

‘(sew0)0011p aa.cmco

Jo ejejep ‘ejeasd ‘junud)

:01 Jemod ey nok sealb XIN

En 1Sul
WST] pANED 8 UBS Spueliludd Xy pUV -esow yonw
‘yonw pue ‘Jeyuud e o) uessss eyl dwnp (psed
0P B Inoyum) se| dweis-ejep sejy OANIsUes
1eloid-peas Jo -BlUIM Seweusellj Jo spiom Aey
10} MSIp & yoseas ‘seuoloesip jund ‘sejy esredwoo
pue ebiew nok sie] pue SOQOId Jo Alljeuonoun) ey
spuedxa X} ilfe lou sieyl ing ‘sewnjoa Adoo Jo
‘SHSIP JeWIO) ‘S810I0eNp Yum iom seyy ebeuew
ueo nok ‘dwoid weisAs eyl woi4{ “Ivji4 SOQoid
ewosioqund 8yl Joj peau 8yl ssjeulwiie XM

‘awin) paisem Jo o] B nok
seaes pue walshs Hunesedo |njesn ejow e SOQO!d
sayew)i °|| oyddy ey} jo siesn semod Joj paubisap
Jabeuew ysip pue jjeys bunesado npemod e s1 XIN

,.Jobeuew Xs1g pieH ayl.,
wiXIM

-eiddy pue xni ueemeq edeuew
oy Bunrexe swy Jo 11 B weds |)|

) JotgeBo] gom oxidy ey Jo; wesboxd s sesn semod c«ﬂm.m_aoazaom_v..omﬂﬂs%om&_m ao>uam8oco ec._w
. e N i QADIIYO, &1 syomexdd : :
£21p6 VD ‘00sIouRIg U] | 05 Buppom ssonddns el 60N e o e welsks 1)y 6 1 WALSASXIN A
woy s1npoxd 83s 0} ANMESIS SEM syomaddy pue Xl X% bursn
UL ‘RIEMIO URAY _omaoEoE ureW Yim 3SIP WvH M_%
o NJUOD |,UPIP PUE ‘Buy POULOp "XIY AnQ pInoys noA ‘(ys1p
\)A_ AR _‘: |_ SuomaKdy U peeu | 1 exou Anq o1 oD PR 8 U0 SO S0RUEL oy 10 58 NSKQNIN) GAUD ¥SIp Auged
/ pioje ued | ‘dea Aowew 0 S8y oum Ue O] WO 8wod
, | ‘deayo os um JOM B OJ8 12y} SomN PU SpUBL -e>ybly € sepniour weisks || eyddy
\x\ Inq ‘ededs dopisep Aw Jo Jey 150| AUOD UBZOP OM} LB ©J0UW SUIUCO N0k JI "XINN puUe SOG-S S yons
| ‘eruy ‘peusuy pey | ueym Apioinb X1 ‘e U] ‘SIBWOJR! YSIP-PIEY Ewep swesAs Bugesado \npemod eow
se 1snl £018A008) pue ‘ysey B Wl 1008 weassd djpy pinous SIuL SIP 10 sainjea) Auew O} $$3008 $19sn
S NV 94 0) POAES sBM dOPISED e6ue) ® 2uLO} O 1NOQE 81,10K J NOK $0QOId 58AB XD) ‘eA0d Ag
Aw ‘Bponreddy woy XIy Pessed surem X ‘(eiduexe o} ‘SOa-SW) - waishs eyl jo Jemod eu SU
08 | UBUM, “Pariom Burpdsend swersks Bugesedo jouo ewos eyun W1 ¥ 1A WaweAuod AureLes & sl
‘Asowews ot pepeo| sxomerddy pey (AdD) PUBWWOD AdOD>-BUWNIOA € pUE ‘sown e 18 Aowsw ut 3ey €t SOQ
4pow-eouy Aw se pessod siabuy Aw PUBLIIOD [VINHOS B SUIUGD XIN exque eyl Jeym ‘|j eiddy ey o) ubw
Koy | “WILSAS SHHOMTIV/SHHOM Xy 0} nq ‘swaishs Bugeiado Joo L
“3ddV/ peieiue- pue ‘dnLElS SYIOM XX DXOu e 'sAes ueAy ‘Worym Bunwod 8000BId UOWWIOO St POPasU 1 A0t
9iddy Aw peyesur JSIp S LM -poys B—ssacosd Adod ey (o ved se jaun %Sip UO SpuBLLOD Buideoy
wesAs Aw pejooq | MSIp NUelq eyl A10198.1D B 818910 |,UOM Y ‘AO SOy SO "WaSAS 6} O} SPUBLILOD pIseq-3SIp
o1 (X! U penddns) wesBoid dnpers 40D) ey SI PUBIWOD 40 8l Inoqe Suppe AQ SOQ0Id Spued i By
ypeds-peyddy ue pue ‘eAuqoid Pey WweKdwod Ao Ajy 'PUBLALIOS 8UO LM 536UByO "OIRMYOS UBAY WOy B
“POW e "WILSASDISVE 'SOQ0I 59y Weseyp 0 5101 Adco Ued NoA *Xiy eoueLUe weishs-Bugeiedo uB X
PeIICO PUE ¥SIP MOU € PO} ot ying suondo preopm npemod i S0a0.d
1 "Ayeuid “Xiy pejeisul ueuy | Ao ol Busn "810uMAUR O} BJEUMAUB WOy 5l jo Bsout el Sedej el nUBw
WU 0 MGSZ AO BZUB0O0) SYOM. oy B AJCO oA 191 ‘erdurexe o) ‘puews (W 1ABUS| S T8 nok sdoay erddy
-oyddy peypow Auw 1o 0 UoRIreg -woo (Ad0o) o) XI BuL 'Y} wel "soW pue sxsip Jnok eeinduew pus
pesn OSfe | SIP WYY B 0} NZ1S Aw s4s-Bugesedo oseq uoped o} sepNn 96EUBW O) Pre0GADY U 18 SpUBL
1° 952 Auo esn (e/emyos BAUP-WYH WeisAS 10 Jep4 O} LOSB! 0) 8ARY NOA 1w 8o NoA i 18 A3u—SHA
- 64) 8ALQOI 101 O AUGN UORYEd 3V op JoBuoj ON SpuBuALOD Bukdos PXYA IO "SOQSIW “Aureinoed ¢.oc
o posn | ‘peN Jepuedx3 dOMSA) ¥SID PUB -9 SU AlBoyReds—SOQoIg OV 10 Uepke 185q au sep eind
3v ey Busn syomerddy peyored | O} SPPB)l SPUBLLLIOD MU 8y} -WoJ JO PUEIQ JAYIOUB PasN JaAS sey
8114 ‘INysseaons sem | 'ABusuding woy SBWod Xix 0 ebejuerpe ey} oum euokus of ‘waishs Bugeiado eyl
X Bunjoal ueym XsIP Wyy € 0} doy 'L 108 0} pajoeuLod seud i Aoouip ee}a1UI NOA 18] 1,Us0D
53D BU} BAKS DINOD | LM L PUB ® 0} Ai0jeIp WeLND Bu) JO SWe) eiddy ‘il eiddy Ue 10 Usowe B
. GODSOp POPUBCKG US ABY IS PIOM -UOD Bl SISY | <G 108 AUB O} puew ABU NOA JeUioUM PIM 618 Surisks
HN ‘vorys 1 O LA 6UO ‘UOTEYEISUY XIX-DHOM -wod §7 e 10 IO expes 0} (<) Bugesedo eiddy :Aep S 0) SAINPUS
uRAY ‘W beqoy 2oddy eRWIN 8Ly eI O} N0 WS oquiAs uey-efee:B B Osn Ued Nok 1oy} uompen B pairers y ‘il ¥sig po
17 10U 9q LUPINOYS £505N §NOU 1—s4ep esaiy puy o1 Duy Asee ue "SPUBLLLICO X[JOUIO BLUOS LM Sy ou 1o} usarshs Bugeiadoysip 14
65 SOW000q XIy IUELOdin 8J0W ey u—somerddy JO LOKIBA peseleun "$8U010RPANS U1 850 Bupnout *Aio} peonponu! Jeindwod eddy UsUM
‘seAup JnoA JoB6iq 8y INq ‘Y pesu U pue ‘(82°G UOISIOA) 67eMY0S BALQ -08)D B Ul S8y [f ISy JO eul UO sawn
LUop Nnok ‘saxddoy YourYs Auo eaey -0id pue jopuedx3 dopiseQ SUOM oA 151 ‘@3UBISUI JO} 'UBD O suondo mERE Dumy
noA j| 0 ya| eddy PAUOO SOQO!d -9iddy ¢ Buuseuibu3 petddy “XI aow Avew ym g ‘D0TVIVO Pue seers
oy sapwoxd x4 ‘ubnow ‘eIeAD YW peusy reaaoexd eJouw yonw Si IvD e vogoun; swes ey suuoped ; Sl 0 ¥l
“suogouny XINN YSIP WYY © 0) Dunes ‘weisks peseq 0sT) §1 ‘puewwoo 3vaHD SOgoly el Teus weks Sumidopor ey 5000k
BIOW UGAS LM UOSISA SO 1Q-91 -Addoy e uo Arernodse ‘Burunsucd eyl sonun ‘eouesul 1o} *(Kioi0eiq €216 VD ‘03s0URI UeS ‘ELA
® 40} sUed OS[@ 8J8 8J0Y] "SUOISIOA swy 8 dopisep v Bunes 1Byl §1 we| BN} HIONIN SPUBWLWOD SOOI 131G UONN 0SB} U /EMYOS UBAY
esniny ur Bunwod ‘shes uely ‘urele -qoxd 8yl “eiep oA Buueqqop woy ejedda; SPUBURLIOD XI) BwoS 0
—PUBUALIOD YO1eq B SPesU X[‘uon SPUBLUILWOD oy 5386y S| ‘SPUBW "uognooxe dn peeds FE XD
sxdde Aue Jo} dopisep PesEq-WvH -wod X Jewe nok Bumey 810)8q XSIP Ageo.8 0 YSIP. WL/ OU) OW1 I W S8
8 018910 0} X[©SN PINOD | 1SHe 01 dopisep IN0A $0ARS XN ‘SHOM spuewwod Auew s8 Buipeos jo vordo wOQo._n_ .w._me ho\soﬁ_
) ‘vogedde ue Bugses 6208q %SIP -oddy WOy Xiy 559508 NOA UBUM o) noA seai osfe XM SIP XD oW
WvY € owr so eep Aw Sunow se ‘spJsed Aowew esauy szubo U0 NIg/ peweu AI00NP B U POIOIS
1061 Arenuer yons ‘o oy Bugnoexe uewy pue ey e u! -28) 0] HyOMeridy BuKPow JeYR X1 68 SPUBUALCO U], "eALoR Uaym Ao
10a00) SPUBLALICS BUILITEG 10 POUIRW FEISU AGWS NOA ‘WL PUB SO, WU JO)1 UBLY §59) 50KInodo spuew
SWOs PAsSW | AlSNOUES 0I0N -wey exy spreo Aowew Aed-pmy e WO XIx sise0ip ey serexdiowt eyt
a » ‘puy 0} Asee sem LOANIOS Y INq ‘dn -ndod LM YoM S90P XD SHOMOIRN ‘uogeondde Jeyo
. Rpeitvhuscesifisey ve1s SHoMerddy ¥SIP-WVH B Wim o8 SUOpPE B Jo woduid ea1 -UB jo eweued ey Butee o 1IND
anm acumucyed pos ‘sbeme—pcog osn o) xyoxd sedoxd ey Buneduod oyl UM oA Juom | suoduld umo puewwod ey BudAl AQ wewuoinue
BEEE PRNOON (8 sswhu—pood s {xeput ou ‘sefied gz1) UOAEIUBWINDOD ey “eye u ‘Buresso—sweiboid AQ XIM 8 ¥xe noA H-eidde proS yum ¥
anung 4q ¢ ‘egepmuA—emx) o) U1 YEISIU BUO PUNO) | TBNUEHY -WOSSY PUB [BOSBY UNJ §J6SN PEOUBA 5sa008 NoA aseum ‘syiomerddy Ul Xy
sbupey s Japiou] S0UBIOMY BINUOR SO0/ O U1 -pe 518 I0q SpUBLALOD Butpuey Ifesut OSE UED NOA TSARIED SB U4oNS
[ueppry SOPCd YIM 10U NS suodal !o Ano U X ‘Spomerddy Joyoune; suogedydde ue woy 0 DS
XY "Siureidwod Auew eAey 1,uop | weiBosd dn-dod B sV "SHOM v8 woy WILSASXIM Buned AQ Xix

-au} ‘ybBnoioqiajad/suoneaiunwwod MO O
1861 ‘Aienuep ‘suizebew i1apiou] wolj pajuliday

UPDATE ... KYAN

Vol. 2, No. 5

The bimonthly journal of Kyan Pascal programming

July/August 1987

UPDATE

Latest Software Versions

Title Version
Kyan Pascal for the Apple 2.02A
Kyan Pascal PLUS Disk 1: 2.02A
Disk 2: 1.02

System Utilities ToolKkit,

MouseText Toolkit,

Advanced Graphics Toolkit,

TurtleGraphics Toolkit 1.00
Code Optimizer Toolkit 1.01
Font Utilities Toolkit 1.00A
KIX 1.01

All of Kyan’s software packages for the Apple
remain unchanged since the last issue of
UrpaTE...KYAN, To update, send your disk(s) plus
$10 for each software title you wish to update.
(Note that although Kyan Pascal PLUS has two
disks, it still only costs $10 to update.)

Real Programmers Don't...

compiled and uploaded to Usenet by Sean Philip
Engelson, Carnegie-Mellon University Com-
puter Science Department

reprinted fromThe ACORN Kernel newsletter

» Real programmers don’t write specs—
users should consider themselves lucky to get any
programs at all and take what they get.

* Real programmers don’t comment their
code. If it was hard to write, it should be hard to
understand.

* Real programmers don’t eat quiche. In

fact, real programmers don’t know how to spell
quiche. They eat Twinkies and Szechwan food.

* Real programmers don’t write in CO-
BOL. COBOL is for wimpy applications pro-
grammers.

» Real programmers’ programs never
work right the first time. Butif you throw them on
the machine they can be patched into working in
“only a few” 30-hour debugging sessions.

* Real programmers don’t write in FOR-
TRAN. FORTRAN is for pipe stress freaks and
crystallography weenies.

* Real programmers never work nine to

‘Real programmers don't eat quiche.
In fact, they don't know how to
spell quiche.’

five. If any real programmers are around at 9a.m.,
it’s because they were up all night.

* Real programmers don’t write in BA-
SIC. Actually, no programmers write in BASIC,
after the age of twelve.

* Real programmers don’t write in PL/1.
PL/1is for programmers who can’t decide to write
in COBOL or FORTRAN.

* Real programmers don’t play tennis or
any other sport that requires you to change clothes.
Mountain climbing is okay, and real programmers
wear their climbing boots to work in case a moun-
tain should suddenly spring up in the middle of the
machine room.

* Real programmers don’t document.
Documentation is for simps who can’t read the

July/August 1987

Apple Edition

Update...Kyan 1

listings or the object deck.

* Real programmers don’t write in PAS-
CAL or BLISS or ADA, or any of those pinko
computer science languages. Strong typing is for
people with weak memories. (See following ar-
ticle for a scathing rebuttal. —Ed.)

* Real programmers never make up sched-
ules. Only planners make up schedules. Only
managers read them.

* Real programmers never deliver pro-
grams on schedule. Either the program is “done”
in two days or it is never finished. In any case, it
is never delivered when it was scheduled.

* Real programmers never eat at restau-
rants. If the vending machine sells it, they eat it; if
itdoesn’t, they don’t. Recently real programmers
discovered that popcorn was being sold in vending
machines. Common coders discovered that it
could be popped in the microwave oven in the
vending machine room but real programmers use
the heat escaping from the top of the CPU.

* Real programmers never deliver pro-
grams on Wednesdays.

* Real programmers never deliver pro-
grams on the first day of any month.

* Real programmers know that good hu-
man factors design requires only the application of
common sense. Besides, no one cares about users.
The program’s written for aesthetic beauty.

* Real programmers know every nuance of
every instruction and they use them all in every
program,

* Real programmers do not clear registers
twice before using them. In fact, if you anoy areal
programmer, he/she won’tclear the registers at all.
And that goes for your memory too!

* Real programmers do not wonder where
the bits went following a shift operation. They do
not care.

* Real programmers are not in it for the
money. Most of them are secret millionaires.

More Changes 1

Yes, we did it again. While you weren't
looking we sneaked this spiffy new
newsletter format in behind your back.

You can't say we didn't warn you, though.
We finally got around to attempting to
work with PageMaker and it's not as hard
as it looked. Only trouble was that they
released a brand-spanking-new v2.0 of
PageMaker and the newsletter had to be
totally redone after half of it was already
completed with the old version, so we
apologize for any delay.

Yes, Virginia, there really is such a thing %
as 'desktop publishing! g

Real Programmers Do...

* Real programmers do consume mass
quantities of Jolt cola. (“All the sugar and twice
the caffeine of regular colas!”) This is because
valuable programming time may be spent in jail
for possession of methamphetamines, so they
settle for the next best thing.

* Real programmers do listen to Led Zep-
pelin, Aerosmith, Van Halen, and Megadeth (and
generally any other loud, fast music) at ridicu-
lously high decibel levels in order to keep them
awake through the long programming sessions.

¢ Real programmers do know every single
ASCII character’s corresponding numerical
value, not only in decimal, but also in hex, octal,
and binary.

* Real programmers do wear only jeans
and T-shirts. A pair of slacks is permissible, a tie
is pushing it, and a suit is sacrilegious. They avoid
meeting with the tie- and suit-wearers. Except on
payday.

* Real programmers do hate mice. (Not

2 Update...Kyan

Apple Edition

July/August 1987

the kind that scurry along the floor, but the kind
that are supposed to roll along a desktop, which is
impossible because a real programmer’s desktop
is covered with tech notes, quick reference cards,
day-old pizza, and Jolt cola.)

* Real programmers do know that pointers
have to do with addresses, not with said hated
mice.

* Real programmers do use quick refer-
ence cards instead of online help screens. Quick
reference cards may take up desk space, but help
screens take up memory space, a far worse crime.
(Besides, as real programmers say, “only sissies
need help.”)

* Real programmers do love CONTROL,
ALT, and function keys and praise macros.

* Real programmers do use command line
programming environments with at least twenty
commands and at least two switches or options for
each command. Menus and windows are for
sissies.

* Real programmers do write long, nasty
letters to software publishers detailing bugs,
demanding fixes and cutting down the program-
mer of the software for writing wimpy code. They
do not call technical support lines with questions,
in fear of appearing as though there might be
something about programming they do not know.

* Real programmers do spend their lunch
hours at school programming instead of eating.

* Real programmers do spend their lunch
hours at work programming instead of eating.

* Real programmers do often appear ano-
rexic.

* Real programmers do always use subsets
of longer words. Forexample, ‘tech,’ ‘specs,’ and

coders. (See previous article. --Ed.)

* Real programmers do spend what little
time they have looking for new hardware and
software.

* Real programmers do spend what little
money they have purchasing new hardware and
software.

* Real programmers do often have resent-
ful spouses/lovers. (Or none at all.)

* Real programmers do get into the busi-
ness mainly so that they can say things like 'post-
mortem symbolic debugger.’

PASCAL
PROGRAMMING

Using Characters as Bytes

A Goob ReasoN 1o Use THEM

Because your programs seem to take up
more and more memory space, it might seem
wasteful to use Integers when poking values into
and peeking values from memory because an
Integer takes up two bytes of memory. (And
actually, it is wasteful!)

For example, let’s assume that we want to
poke the number 1 into memory location 752.
Here is how this is done:

‘docs’ for ‘technical,’ ‘specifications,’ and ‘docu- VAR
mentation,” respectively. memloc : “integer;
« Real do i nt terms for (*pointer to integerx)
Real programmers do invent te o value : integer;
menus, windows, and help screens so important to
the users. For example, ‘Sissy Screen’ and ‘Wimp
Window.’ .
* Real programmers do always type “Pas- ~ value := 1;
1 1 italized din 1 (*assign the value*)
ca ;Z‘ropery cag).lame and n lower case— | o7, Pointer(752);
never “PASCAL” in upper case like the common- (*specify the address*)
memloc” := value;
July/August 1987 Apple Edition Update..Kyan 3

(*rerform the pokex*)

Because memloc is a pointer to an Integer,
it requires two-bytes for the pointer address and
another two bytes for the Integer which it points to.
value, although we never will have it exceed 255
(the maximum number one byte can hold), hogsup
two bytes of memory, too. As you can see, a few
bytes are being wasted.

Kyan Pascal has no Byte data type which
we need for value in this case, but there is some-
thing almost as gopod—Char. “What!?” you say,
“Poke a character into an address? Yeah, right”
Strange as it may seem, it can be done. Here’s
how:

VAR
memloc “char;
value : char;
value := Chr(l);
(*assign the value*)
memloc := Pointer (752);
(*specify the addressx*)
memloc * := value;

(*perform the poke*)

We can use characters because the com-
puter represents a character with a number; it has
no other way of doing things. This gives us the
ability to perform a poke with a character because
in reality, it is just a number. By making memloc
apointer to a character, a byte is spared; by making
value a character, another byte is spared. Notice
how the predefined Chr function is used to assign
value the ASCII character corresponding to 1—
youneedn’tknow or care about the ASCII charac-
ter, only the number.

We can perform a peek in much the same
way with:

memloc := Pointer (752);
(*specify the address*)
value := memloc *;

{(*perform the peek*)
WriteLn(‘Peeking into 752 reveals the
number ‘,0rd(value));

ANOTHER GooD REASON

Depending on the type of programming
you do, the space saved by this ‘char poke’ tech-
nique may be negligible to you; if so, character
poking has another benefit which offers poten-
tially greater utility.

Normally, when you perform a poke in
Pascal, either with the Poke routine in the Assem-
bler section of the Kyan Pascal User’s Manual or
with the Pointer-to-Integer technique, there exists
the potential to adversely affect your program.
Because an Integer takes two bytes of storage, it
writes both of these bytes into memory. For
example, this Pointer-to-Integer technique:

value := 1
memloc := Pointer(752);
memloc” := value;

puts the least significant byte (LSB) of the Integer
into memory location 752, as we would expect.
Unfortunately, Mr. Murphy, that little guy who
makes everything go wrong, also puts the most
significant byte (MSB) of the Integer, O in this
case, into the following memory location, 753 in
this case.

Now it just may be the case that with your
particular operating system, poking 1 into mem-
ory location 752 causes your computer to write the
meaning of life and the secret to eternal happiness
to your screen but poking 0 into address 753
causes your computer to launch several multiple-
warhead thermonuclear ICBMs. Now if this were
true, wouldn’t it be a real bummer to find out the
meaning of life and the secret to eternal happiness
and then be Chernobylized fifteen minutes later?

4 Update...Kyan

Apple Edition

July/August 1987

(The moral to this story is: Use the Char-Poke
Technique When Unsure of What the Following
Address Controls —or— Never Use the Pointer-
to-Integer Technique if You Work for the Penta-
gon.)

(Character-oriented Peek and Poke routines ap-
pear at the end of the newsletter in the LISTINGS
section. —Ed.)

Bulletproofing Programs

It used to be that in the old days, users of
programs were pretty knowledgeable of their
computers and when an error or crash occurred
they would not complain much. (In those days
software was hard to come by and users didn’t
want to upset the programmers.) These days
however, program users are getting less and less
knowledgeable of their machines and more and
more upset about crashes, much to the disappoint-
ment of programmers.

When writing their programs, program-
mers must keep in mind that end users may know
very little about computers and what makes the
programs crash. For example, a user may insert a
data disk into the disk drive sideways (stifle those
giggles; the author has seen it happen), which will
usually result in some sort of fatal I/O error when
your program attempts to read from or write to the
disk. A more common cause of runtime errors is
entering letters when the program expects num-

bers, as even the best typist may inadvertently tap
the semicolon key just before the carriage return.
There are scores of things that can go wrong with
even the simplest of programs, so the programmer
must be prepared for them.

To make a program truly impossible to
crash (also known as ‘bulletproof,” ‘waterproof’,
and ‘idiot-proof’), the programmer must keep in
mind Murphy’s law because it applies so well to
programs. Whatever can go wrong will go wrong.
This means that the programmer mustkeep a wary
eye open to watch any place in the program which
provides an opportunity for an error. A great
percentage of the errors happen during input/
output for a number of reasons, such as:

* Input sometimes requires the user to type
in data from the keyboard, which is an inaccurate
means of data entry

* 1/O devices, unlike the computer itself,
are often mechanical and have moving parts which
are more prone to failure

* /0O devices are subject to the user’s cor-
rect operation (for example, online/offline buttons
on printers and doors or latches on disk drives)

* A file may not be found on disk when
reading or the disk may be too full to write

Therefore, the would-be bulletproof program
must take nothing for granted and must always
assume thatan error can and will occur during I/O.
Bulletproofing a program is accomplished
by trapping the possible errors. For example, if a
program requires the user to input a number

Write(‘Enter rate of speed: ‘);
ReadLn (speed) ;
(* assume speed :

integer *)
the user may type in “55mph” notknowing that the
“mph” characters are unnecessary and will cause
the program to crash with an input error. Or the
user, being a stickler for accuracy, may enter
“55.42” which will also cause a crash. (See what
happens when you exceed the legal speed limit?)
To trap an input error in this situation, a
few things should be done. First, the user should

July/August 1987

Apple Edition

Update..Kyan 5

know, from the program’s documentation, to enter
an integer and nothing else. (In this case, it would
also be helpful to ask for miles per hour instead of
kilometers or the program may have to face an
input of “88” when a metric-oriented person steps
up to the keyboard.) The program should read the
input in as a string, because practically anything
can be entered from the keyboard in a string, with
the possible exception of the Reset key. The pro-
gram should then convert the string to the number
needed. The System Utilities Toolkit contains
several number-to-string and string-to-number
conversion routines which will do the job just fine.
So, with these things in mind, the code might look
like this:

Write (‘Enter rate of speed: ‘);
ReadLln (in_string);
speed := StrTolnt (in_string);

That is a painless, efficient way of trapping input
errors from the user. The errors such as the one
demonstrated are called type-conflicts or type-
clashes and because Pascal is a strongly-typed
language, the compiler will flag and report a
conflict such as:

character := real number + 1;

and a similar error will crash the program during
runtime. The other kinds of errors are more
difficult to trap, as we will soon see.

‘If a program crashes, it is dead...
not even Oral Roberts can save it.’

THE FURTHER ADVENTURES OF JOE PROGRAMMER

Let’s suppose that a gentleman named Joe Yoozer
is using TurboCalcWriteCommGraph, a $99.95
do-everything program written in Kyan Pascal by
Joe Programmer and published by JoeSoft, Inc.

TurboCalcWriteCommGraph, being a typical Joe
Programmer program, makes no provision for
trapping errors of any kind. Let’s also pretend that
eight hours into entering kilobytes of data into the
Calc module Joe Yoozer, being a typical software
user, finally decides it’s about time to save his data
to disk. However, Mr. Yoozer inserts an unfor-
matted disk into the drive, the program crashes
while attempting to write to the disk, and Joe
Yoozer becomes very upset over having just lost
eight hours of work.

After a call from an irate Joe Yoozer,
Joanne Texupport of JoeSoft reports the problem
to Joe Programmer and he decides to add some
error trapping and issue an update to JoeSoft’s
best-selling program.

Joe Programmer soon realizes that trap-
ping errors with I/O devices, unlike simple key-
board data entry errors, is very difficult. As the
programmer, he has no control over whether ornot
the user properly inserts a formatted diskette with
enough disk space for the file or whether or not the
file specified is on the disk, and soon. A Resetor
Rewrite statement can be very unforgiving when it
comes to /O errors. For example, if the statement

Reset (Fyle,’ /Vol/Myfile’);

were executed and Myfile were not on the Vol
volume, the program would crash with an /O error
message. That is what the ISO rules say must
happen—no ifs, ands, or buts. The program is
dead; not even Oral Roberts can save it.

So Joe Programmer, it may seem, is stuck.
The only practical, truly-effective way to trap disk
errors is to go into the assembler and program with
the MLI, the ProDOS Machine Language Inter-
face. After an input or output operation, the MLI
returns an error status byte which can be checked
and acted upon by the programmer. Joe will have
to write a whole new set of disk I/O procedures and
functions using assembly language. Because the
Pascal runtime library already takes up a good deal
of memory for I/O routines, this double use of
memory is somewhat wasteful.

However, there is a light at the end of the

6 Update.. Kyan

Apple Edition

July/August 1987

tunnel, and itis the Code Optimizer Toolkit.
Besides the speedy and memory efficient
macros it gives your program, it also con-
tains the source code to the runtime library.
A good programmer can rewrite the normal
input and output routines of the runtime
library so thatI/Oerrors can be detected and
acted upon as he deems necessary so that
crashes do not happen. However, rewriting
these assembly language I/O routines is not
for the novice programmer; only an inter-
mediate to advanced programmer, such as
Joe Programmer, should attempt these
modifications.

So, using the Code Optimizer
Toolkit, Joe Programmer tweaks his pro-
gram so that it won’t crash upon experi-
encing a runtime I/O error. With this and
the other added feature of greater speed
given by the Optimzer, JoeSoft releases a
software update: TurboCalcWrite-
CommGraph v1.1. (Have your credit
card ready; operators are standing by to
take your order!)

LISTINGS

PROCEDURE CharPoke (charpoke_addr :
charpoke_val : integer);

(* by Erik Warren, 17 July 1987 for
UPDATE. . .KYAN Vol.2, #5 *)

(* not the most efficient way to poke but
it demonstrates how to use chars *)

(* call it like this:

integer;

CharPoke (myaddress,myvalue); *)
VAR
charpoke_pointer : “char;
BEGIN

charpoke_ptr := Pointer (charpoke addr);
charpoke_ptr* := Chr(charpoke_val)
END; (* of CharPoke procedure *)

FUNCTION CharPeek (charpeek addr :
: integer:;

(* by Erik Warren, 17 July 1987 for
UPDATE...KYAN Vol.2, #5 *)

(* not the most efficient way to peek but
it demonstrates how to use chars *)

integer)

(* call it like this: myvalue :=
CharPeek (myaddress): *)
VAR
charpeek_ptr : “char;
BEGIN

charpeek ptr:= Pointer(charpeek_addr):;
CharPeek := Ord(charpeek ptr")
END; (* of CharPeek function *)

UPDATE...KYAN is designed and edited by
Erik Warren and published bimonthly by
Kyan Software, Inc., 1850 Union Street,
Suite 183, San Francisco, California 94123

July/August 1987

Apple Edition

Update...Kyan 7

Tech Notes and Errata

ASSEMBLY LANGUAGE PROGRAMMING

Changes to Routines Used in Kyan Pascal, Version 1.-

Assembly language routines written for version 1.- of Kyan Pascal must be converted to run under
the new compiler environment. The following changes are required.

1. The local variable stack now begins allocating storage at SP+5 instead of SP+3.

2. The predefined labels T, SP, and LOCAL are now redefined as _T,_SP, and
_LOCAL. Note the underscore character preceding the label.

3. The new compiler uses the underscore-first convention to distinguish
compiler/assembler system labels from user labels. DO NOT USE THE
UNDERSCORE IN YOUR OWN LABELS.

4. Routines which use RAM bank 2 of Motherboard ROM will destroy the KIX shell.
The references must be removed from your programs.

5. Routines which use memory $300 through $340 will disable KIX. All "safe" storage
must be done in user-defined data areas in the host Pascal program.

6. 1f you own an Apple Il or ll+, you can simulate the underscore character by pressing
<Control> - Shift - P.

Functions Written Entirely in Assembly Lanquadge

Conformance to the ISO standard dictates that the compiler return an error when it encounters a
FUNCTION written entirely in assembly language. This occurs because 1ISO requires any
FUNCTION identifier to be explicitly assigned a return value (something which obviously does not
happen in pure assembly language routines). For example:

FUNCTION DEMO:BOOLEAN; *

BEGIN

#A
LDY #5 ; STACK ADDRESS OF FUNCTION VALUE "DEMO"
LDA #1 ; TRUE BOOLEAN VALUE
STA (SP),Y ; MAKE 6502 ASSIGNMENT

#

END;

This function will generate the error message: FUNCTION RESULT UNDEFINED.

The solution to this problem is to declare a local variable which matches the type of the function
being written. For ease of use, be sure the local variable is the last one declared so that it is always
at the top of the local stack space (i.e., starting at offset 5). Instead of storing the function result
directly into the stack space allocated for it, put the result value into the last local declared
(mentioned above). Then, the last line of the function code before the END: is an assignment of
the function identitier to the local variable at the top-of-stack. This method makes machine code
clearer to other programmers and makes it easier to debug a function.

For example:
FUNCTION GOODEXAMPLE : BOOLEAN;
VAR RESULT : BOOLEAN;
BEGIN
#
PERFORM CALCULATIONS HERE

LDY #5 : ALWAYS STACK POSITION OF LAST DECLARED

STA (_SP),Y LOCAL VARIABLE
#

GOODEXAMPLE = RESULT
END;

PREDEFINED FUNCTIONS AND PROCEDURES -

The ASSIGN statement has been replaced by ADDRESS and POINTER as predefined functions.
This modification to Kyan Pascal gives the programmer more power and flexibility. The syntax and
description of these functions follows. h

ADDRESS
Purpose: This function returns the memory location of the first storage location of
the identifier passed as an integer value.
Syntax: FUNCTION ADDRESS(identifier):INTEGER,;

Example: PROGRAM EXAMPLE
VAR X INTEGER;

BEGIN
, WRITELN ("The address of variable X is ', ADDRESS(X))
~END. ' :
POINTER ‘
Purpose: Assign a pointer an integér value. Note that the integer passed does not
. have to be constant (i.e., it can be a formula).
Syntéx: S FUNCTION FOINTER(X:Integer) (INTEGER,;

Example: PROGRAM EXAMPLE2;
.+ VAR X:INTEGER;
© Z:ANTEGER;
BEGIN |
X :=100; (* NOTE THE MSB OF XIS 0 *)

Z := POINTER(ADDRESS(X));
WRITELN(Z?Y)

END.

This program will.return the output *100".

HIiRE RAPHI nd RUNTIME MEMORY

Since this manual was printed, the procedure for relocating memory for HIRES graphics has been
changed. Instead of using the directive "ORG $4000" to relocate the program in memory (see
page IlI-15), you should use the directive "_UsesHires". The impact of this new directive is
illustrated in the following modification of the Runtime Memory Map.

_SystemFiles are loaded at $2000 and relocated depending on the setting of "_UsesHires" (on or
off). The "_UsesHires" causes the BIN image of the object program to be loaded at location
$4000 and the heap to occupy from $800 to $2000, thus leaving $2000 - $3FFF clear for the
HiRES routines.

0 - $ 7FF Apple system overhead

$ 800 - $1FFF System variable space

$2000 - $3FFF Hi-Resqutibn Graphics (page 1)
$4000 - $8FFF Program

$9000 - $BEFF _LIB (Kyan Pascal Runtime Library)
$BFO0 - $BFFF ProDOS primary access page
$C000 - $CFFF Soft switches/peripheral ROM space
$D000 - $F7FF Appiesoit BASIC

$F800 - $FFFF System Monitor

Runtime Memory Map with * UsesHires" INACTIVE

0 - $ 7FF Apple system overhead

$ 800 - _LoMem Program

_LoMem - $9000 System variable space

$9000 - $BEFF _LiB

$BFO00 - $BFFF ProDOS primary access page
$C000 - $CFFF - Soft switches/peripheral ROM space
$D000 - $F7FF Applesoft BASIC

$F800 - $FFFF System Monitor

Announcing ...
The Font Utilities Toolkit

Kyan Software is proud to introduce the Font Utilities Toolkit, the latest in a line of toolkits
which make programming with Kyan Pascal faster and easier.

The Font Utilities Toolkit is a family of routines which let you add text to the hi-res screen. It
lets you jazz up your application programs with custom graphics, large fonts, and animation! With
the Toolkit, you can create Kyan Pascal application programs with hi-res displays featuring:

CUSTOM CHARACTER FONTS

which are

IJNRGIE or SMALL , FORMAL or Hang-Loose

With the Font Utilities Toolkit, you can ¢reate and save your own custom character sets.
Build a custom font library and use them in other programs!

AND, you can move characters about the screen. Animate your program displays!

Using the Font Utilities Toolkit is simple. Instead of cryptic hex addresses and bitmaps, you
can use clear English-like names and syntax such as:

PutChar('A', At{[{Column,Row])

And, if you are a developer interested in fast, compact code, the Font Utilities Toolkit lets you
make the font routine calls in assembly language.

The Font Utilities Toolkit was developed and licensed to Kyan Software by Kevin Neelands,
Senior Programmer, Acumen Development.

Hardware Requirements: Any Apple // with at least 64K
Software Requirements: Kyan Pascal, Version 2.0
Retail Price: $29.95

ORDER FORM
YES! Please send me copies of the Font Utllities Toolkit for my Apple //. | am enclosing $29.95 for each
copy plus $4.50 for shipping and handling ($15 outside North America) for a total of $:
Payment Method (please markone): ___ check/money order ___Visa __ MasterCard
Card Number: Exp. Date:
Name: Phone:
Address:
City: State/Province:
ZIP/Postal Code: Country:

SEND YOURORDER TO: Kyan Software Inc., 1850 Union Street #183, San Francisco, CA 94123
OR CALL: 415-626-2080

APPLE // SOFTWARE
CATALOG

kyan software

1850 union street #183
san francisco, california 94123

First Class Mail

KYAN SOFTWARE INC.
SAN FRANCISCO, CALIFORNIA

g - 9ded DOTV.LYD HAVMLIOS // 1ddV

Sl (Tomarsmay s,ueks[) TR arepd(]
Al (-1 uoIsIdp) [BISeq ueky woij sapeiddn
€1 aI1EM1JOS URKY WOI] $1oNpOId I9YI0

4! xazrumdQ 9po) -- TA N[00,
11 SO1IYdBINISNOIA] -- A N[00,
01 soyderna[uny, -- A[N[00,
6 soydel) paourApY -- [I] IM[0O],
8 IX3ASNOJA -- T N[00,
h
o
m
v

SanNu() WAISAG -- [IN[0O,

SN1d T8osed ueky]

(SOQ©1d JO UoISUAXI MI-XIN(SUeAY) wu XTI
(0’7 uoIsIap) [eased ueky

S RLLECEEEEERERY) (1) §Ti [§ ATE g CEEEEEES

iAepo) A[iuiej dazemiyos uely ayjy uiof

-9oud aseyoind ay) jo punyar [y e 10§ Jonpoid Y3
wnja1 ‘parysnes A[9191durod jou are nok j| -oajuereng yoeq-Aauowr
Aep O€ B YyNm sowod ueky woij A[I03IIP PIIOPIO dIBMIJOS [[V

‘uorjdejsijes Inok sddjuerend arempyog uely ‘Ajjeury

‘s19ndwod repndod 19y30 3say) uo uni 03 papdwosar
9q ued sweidoxd ;/ ojddy Inok 10j 9pod 221nos Yy ‘sAndwod
11q-g JO A[Iurej 2IJOPOWWO)) pue Ly 9yl I0j sio[idwod rejrurs
sey ueky 2ouls ‘os[y "siomdwrod sureljurew jsowr o) 9qenod sr
91ddy 1no£ uo UM NOA a1BMIJOS YY) ‘[ROSE] prepuels OS] SI [edsed
ueky 2ourg cAyqiqeydod pue Liquedurod 3pod dINOY

-~

DOTVLVYD DAVMILAOS // H1ddV T - 93%eg

-9o11d [re3a1 9Y) WOIJ JUNOISIP
Tenueisqns e paIdjjo Apuanbaxy are pue “)sIy wWay) JNOGR INO puly
S19uUMO 3umisIXa ‘paonponur are syonpoid mau udypy 93Ieyd ou o
a1 38 sopeaddn paIsjjo oIe SISUMO SUTISTXI ‘PISBII IR SUOISIADI
1oupord uoyp °sapeaddn 3s0d> mo| diporrdd SI3Jj0 uefy|

‘sjuswdoraaap
aremyjos pue sdr) Surwrurer3oid 1saref oy Jo 1seaIqR NOA SdaaY ueky
‘uedyy - ajepd() ‘rondrsmou sueky yim pajdno) -swopqord
SurwwresSoxd y3noryy Suryiom pue spool SurwwrerSord ySu
9y 3unoopas ur nok d[ay 01 Apea1 are oAy "SSOUISNg 3Y) Ul 153q Y}
Jo auo st Jyeis poddns [eoruyos) inQg -jaoddns sapiaoad uely

"(-ouy snduio)) ajddy wioxy £[3oamp pasuadl] 9q ISNW SI[NPOU SWOS
PUR PIAIIRQO 3q ISnur sadpjou W3ukdoy :910N) ‘sonjeLor Suiled
oy sinjjoo], Surwurerdoxd oy} ur sounnol pue AIeiqry swmnuny
JeOSEJ 941 oSN UBD NOX °I3JJ L)eLOod SI IIBM]JOS uely

“uonEIRUI] JnoyNm
SOAUIp pIey 0Juo IO JSIPINVY Ol aremijos ay) Adoos pue sardoo
dnyowq oyew ued nox °pajdajoxd-£dod jou si 3rem)jos uedy

:m9J © 1snf are Suimorro ‘sjonpoxd
aremyog uedy Anq o) nok 10J suosear pood Auew aIe dI9YJ,

, *3101S [Te)31 SIBM1JOS
Jed0] oA I0 aremiyog ueky woij d[qe[ieAe mou are sypnpoid
8], "aremyjos 1re-ay)-Jo-ajels 1soje] Y1 dojaaap 031 Aressasou
$]001 3y3 Yim nok apraoid pue §OOIJ Iepun uni sjonpord uekyy
283y, "s19ndwod jo Arurey // opddy a3 J0J sapIn pue sjooy Surnu
-weigoxd jo aury ajo[dwros s,01eM1JOS URKY SIQUOSIP SofeIed Sy

:pusLy Teaq

)OS STTEL aaTagndwo))

OJdSNVAN €11686 X921
0807929 (STP)
€TZIY6 VO ‘odspuely ueg

€8T# ‘991§ uotu) (SSI
dU] daem)joS uely]

T680-867 :ION

G - 93eg DOTV.LYD FAVMIHOS // 1ddV

S6°6v$ g ey parsading
*PIPUIWLIOIIL PIBINVY (SIALIP YSIP

oM} pue Y9 ynm // Iddy Luy ssjuawidainbay drempaey

*$321A9p [esaydrrad 1ou0 pue szjund
01 1nd1n0 JO UONIdANPAI pue SpIedplim Joy Joddns Jny suelu0d XTIy ‘UonIppe uj

‘(Jojund ® 01 S)UNUOI uda1ds durnp pue ‘sindino 0apIA wUn[od
08/0Y pue Sep/owr Wasks 125) TS[[e)) JITMUIL]/2IEMPIC o3¢

‘pue {(sSuins I3j0BIRYD IOJ SA[IJ YOILAs
Io/pue $3[1j 10J SAUOJOAINP Yoreas) T

{(sownjoA Iojpue sayij sydunw udaIMIaq

S20UAIRJIP Y1 15| pue aredwos) TIIWM[OA pue SII] Iedlioy
{(s)stp JBWIOJ {SAWN[OA JWTRUAI IO ‘339]ap ‘Adoo) TSIWAOA UM JIOM

{(sory Jo smeis wonoajoxd
28ueyo 1o juud ‘oweuar ‘a13[ap ‘daow ‘Adod) TSI FeInATUE

‘(sauopoa1p a8ueyd Jo 919[0p ‘Aeand quud) TEIUOIIAIRT [oHU0

(03 1amod ayy nok saa1d xIy

ja1ow ou ojquIIg ‘AN ‘SOJOIJ Ul
Jamod Jo yoe| ay In0qe sown Auew Jjasinok 03 pajqunid K1qeqoid aA,nok ‘aaey
nok J1 -Aianonpoid 1oL asearour pue opif anof Ajrpdws ued 31 MOy pursIapun
01)noYJIp 9q Aew i ‘W3}sAs Sunerado D [E21 B YyNM payIom J9AU 3A,N0K Jj

ispomaddy
apisur woyy Jo dwoxd wia)sAs e wory pafres aq ues Loy ‘puy ‘suondo puewuIod
JO sparpuny Sey X[Y ‘IOW UYOnul ‘Yonwk pue ‘SI[J SATISUAS YIO[‘SpIom
A9 10§ syuaWINOOP Yoreas ‘safy sjendiueus ‘SILI0IATP)I[SP 10 IO nOK ‘saul]
PUBWIWO S[duIIS YA\ "UONIOUI PIISEM PUR SUIT) NOA SIABS YOIYM [[9YS SOOI
injromod e st "IT 3]

*SIeak 10J s13su D J9YI0 pue INdI
01 Jqe[reae uaaq dAey 1. sanyiqedes nok s9AIS XTI “XINM PUe SOQ-SW
J0 19mod 3y 11 9A18 pue SOOI ureyoun ued nok XT3 YA wasks Sunerado
ue se SI SOQOId paNwWI] moy mouy nok 40[& 1andurod mok asn nok J|

«SOJoId 01 XINN Pue SOJ-SIN Jo 1mod dy3 sppy,,
wi X1

DOTV.LVD TAVMILIOS // 41ddV { - 9deq

§6°69% o1 |11y pIysading
Kiowdw Jo Yp9 yum If 3jddy Luy :syudwaxinbay asempaiey

‘I ?1ddy ay) uo Zunuweadoid jesseq Joj piepue)s ayp
duwodaq Appmb si 31 Aym no purg c[esseq uely £KiJ,

*dooAsp nok aremyjos

M Areiqry swnuny [eosed oY) asn 03 asuadly sa1j-Kijehoy

"SALIP JSIP prey 10 YSIpIu() ,$°¢ ‘WY 0T S31J peoj pue

sardos dnyoeq ayew 0) no£ mofe ey sysip paroaroid £dos-uoN o
*3p09 901108 A|quIasse

P3pNJoUE JO SUI[-UT PPE 0] NOK SMO[[E YIIYM JI[qUIISSE UI-i[ing O

*sonydesd uonnjosar Y3y pue ‘Sraquinu wiopues

‘s3[1j wopuel ‘Suifpuey 3uLns ‘ureyd ‘OPNIOUI SYI| SUOISUIAXD [BISE]

“SSpowl U023 (08 PUB O UM JONIPH IXI, USAIDG [Ing

*DISVE uey 1a)Se) sown (f UBY SI0W SUNI eyl SpOd

1eI2ua8 YoM “Iojquiasse pue Ja[Idwiod apod suryorur 709

“JSIp 3y uo papnpour wANsAS Sunersdg SOOI

o

© ©

C o

:apnpout sarmes) [eased uedyy 1ByQ0

"a1um oA surerdoxd aip 03
$3IME3J PIdUBApPE J3YI0 pue ‘soryderd feuorsuouitp-¢ ‘SorydeInasnopy 9xa [ISnop
ppe 01 A)[iqe oy nok saAI8 [eased ueky ‘siyjoor Sunwwreidord mou suely
YnM pawes) usym ‘puy °sjonpoid feoseq 1930 ut punoj jou saniqedes pue
sarmeaj yim siourwresdoad paoussadxs sapraoid 1 “wralsAs juswdofaasp arem
-)jos [nppamod e os[e s3] 'j00) Surures] e Isnf uey) arow st ISR UBKY Yng

"3UI0Y 18 SIUAWUFISSE JI3Y) Op JueMm pue 3s1nod SururwerSoxd [eosed e Surye)
aIe oym SHudpnIs 10y 315941ad ST 3] TRLIOIN [ROSE(219[dWOD B SIPN{dUT YoIyMm
Tenuewr 3ged (0¢ ‘aA1SUSYAIdWOD € YIM SIWOD I *SITeSSawW JOLII JO SILIRIqY|
[EJ3A3S PUB SUDIDS J'THH ‘SMUSW PUBWIWIOD SaImed))] “puru ur souurdaq
oy sdaoy 11 334 ‘003 SurwweiSoxd ynyramod Ajowanxa ue SI [RISEY uely|

*S2INJE3J JO ISI] IAISUIIXS PUR JUSWIUOIIAUD

Apuauy-zasn ‘9oud [eORUOUOI3 S JO asNEXdq S1owwrerSoid pasueApe pue sjuapms
Y10q Aq pasn Apapim st 3] “SATIp YOI
I 14 pu I

1dwt iy !

C [eosed Surdojaaap v.cm Jedsed Guruiesy 10§ o.ws_umn 109p1ad 3y m_. [easeq uedyy
- A ;

(0T uoIsIap)
[ease ueAy

L - 93eg DOTV.LVD TAVMILAOS // A1ddV

S6°6v$:011g {1839y PoIsadsng
0'C uoISI3p ‘IBIseq uely ;sjuawdainbay daemijog
Mv9 ynm j dddy Luy :syuawanbay asempiey

-swerdoxd [eosed mo4 01 syndut sul|
puewwod 3a:d1ajur 03 noA sajqeus yorym sunnoi Suisred surf e pue (A|[edawnu
10 A[eonaqeyde sojij pue SpIOJaI 110S 0) ROA MO[[e YdIym Saurinox 3319w
PUE 1JOS {BSI2A 91A PUB SIIQUINU [B3] JO $19393U 0) SSUINS UIAUOD O} NOA MO[[e
YOIyM SUNNOI UOISIAAUOD :snjd SSUNNOI JAQUINU WOPUEI SIPA[OUT AXeqy| SWYL

“(0p ynm +1 91ddy "sA suwnjod (g Yim
9 o1ddy “8-9) patooq Suraq st wierSoxd 0K Yorym ur uoneInSyuod arempIey
3y} SAYNUSPT YOIYM SUNNOI B SIPNJOUT OS[E)] "SIEMULIL] UWN[OD ()8 JOJ SaUNNOX
JJO/UO ‘pue {SUONOR USAIOS JEI[D PUR ISIdAUI “BUI[[OIIS {SUONOUNJ [OIIUOD JOSIND
Iayi0 pue A XOLOD :10J SSUNNOI sapnjoul ArRIGH 3y J, "SUOHOUNJ UIIIDS [ONUOI
o3 swerSo1d [eoseq In0A uj ash ued NOA YOIYM SIUTINOI (O SUreIU0d Arerqr| siyJ,

ATCIqT] JUOURSCUe[y U33155 111

‘suoneorjdde [[eqyoen pue “jonskol ‘osnow
10§ SOUNNOI SIPN[oUl ATeIqI] 9Y], °SIOIASP [BWIAIX2 pue swesSoid uonesydde
1Mo£ Jui] 03 nok MoJ[e YoM saunpadsoxd pue suopouny g1 Surejuod Arerqif SiiL

XIeaqry JPAl(q A 11

*3IOUWI YONUI ‘4onus pue ‘Yo0[d walsks B Jumes ($ar010211p
Sumyoreas pue ‘Suraowrar ‘Suneand ‘saqyy Suipuadde pue ‘Suryoojun/3urydof
‘Bunarep ‘Surwreusas ‘Suiddos :30j sainpasoid Juipnjour ssunnol Lz SureIUOd
Arexqip oy, ‘werdoxd [eosed ok ungim woij sampasold pue suonouny SO
SNOLIBA JO AN[euUOnIdUNy 3Y) SSIIJB NOA I9] YOIYM SSUNINOI SUTEIU0D ATeIql] STy,

ATRIQUT ATl SOAoid 1

*SaUIBIqY| JnOj Ol
paziuedio are sounnol 0oL ayL ‘swerdoid umo Inok ur supnol yoes guisn
JIoj suononnsur 333jduros pue swesdoid sjdures snd ssunnoI 4 SUNRILOI N[00,
ay], swerSoxd uoneordde [eose JnoA ug pasn aq 0} PAUSISIp I YOIyYMm SaUNOoI
a8en3ue] A[quassy pue [eosed SUIEIUOD JIYIOOJL SINNN() WIISAS YL

SanII() WIdISAS
I Il00 1,

DOTV.LVD HAVM.LIOS // 41ddV 9 - 9ded

‘Kjowandas X1 puv (°7 u01Si3A)
wosod uvky J4apso asvayd ‘sungaf siyy yupm nof [‘aamwaf
sysopmapddy-x Iy ays apnpout jou saop §Id wIsvd uvky 20N,

$6°66$ 201 [1e1dy parsaddng
Klowdw Jo Yp9 yum |y 3ddy Auy :sjudwaainbay aaempaey

‘11 3[ddy oy uo SunuwrerSoid [eosed 10§ prepuels oy Surwoaq
ST 11 Aym 13A00sIp ApYomb M nok ‘§d [8ISed uedy An nok uaym

"AreIqry sumuny] [edsed ay) asn 0 asuady| 321J-KIeL0y O
7 "SALIP YSI prey JO YSIPHU() ,$°¢ VY OIUl S3]Y peoj pue
, sardoo dnxjoeq axyew 0) nok moje eyt sysip paroatord £doo-uoN o
9p09 OINOS Afquuasse
P3PN[OUL JO UI[-UT PPe 0] NOK SMO[FE YoIym IS[GUIIsSe Ul-ing O
*solydesd uonnjosar ySiy pue ‘Ax0108 ‘sraquinu wWopuel
‘sa[ty wopuer ‘Gurpuey Suwns ‘ureyd opnyour SYI| SUOISU)XA [BISE] O
*S3IpOW UWIN0D)8 PUe O YN J0IIPT IX3], UAIOS [N O
DISVE Ueyl 19156y Sawm (¢ UBY) 10Ul SURT JBY) 90D
31e1oua3 YoIyMm IS[quIdsse-odew pue 19dwoo Spod suryorws ZOg9 0
*YSIp a1 uo papnjour wdlsAg Funeradg SOQod ©

:sarmeay osye SM1'1d 18dIsed uely

“swerdoxd 1ok 0) sarmeay 1310 pue ‘sorydeid (1-¢ ‘sorydrINISNOW X3 SNOW
ppe 01 ANfIqe 3y noA $3A13 §)q [eIseq uedy ‘suy[oo] SurwweiSorg mau
s,ueky im pawrest usym ‘puy Ananonpoid pue peads Surwwerdoxd soueyud
Apeasd yorym sanyn wasks Sunerado ¢z uey srow siourwerdoid saard
XIM 11 91ddy 2y Joj JuswuoirAud ayI-XIND Mau [npamod sueky ‘u XIM
sapnjoul SNId [BISeq ueky] ‘walsAs juswdojaaap aremyjos paresnsiydos
e OS[e S)] 00} Surures] e isnf uey srow SI §nTd [BISed ueky ang

"suononnsul 9391dwod pue ‘spo a5uaIJY YOINY) ‘[eHoIN [edsed €
dupurejuod renuew (38ed 0gy) aarsuayasdwod e ynm SowI0d 3] "pulwl ur Jauurdaq
ayy sdaay 11 1L ‘joor SunwwesSord [npromod e st S [BISEd ueky

*SAINE9J JO ISTf DAISUSIXI PUB GUIWUONAUD A[pusyj

-19sn “3511d [eONWOU03D ST JO 3snEedaq axIe srowureiSold pasuBApE puE SHUIPNIS

Kq pasn bov_a S1I] *(SATIP JSTp 913Ul

] (JO1d I3pun SUnIpue [e3seJ OSI JO UoneIuatIa[duT __Em T3] ‘swresgoid
gommm Suidoyaasp pue [eoseq Sururesy Joj 19951ad 1 (0 :o_wh;v [easeq uely

f S—

SN'Id 1eased ueidy|

6 - 98ed OOTV.LVD HIVMILO0S // 91ddV

01 [1e1dy Ppajsaddng
:sjuawdainbay ddemyjog
:sjuawaainbay asempaey

S6'6¥$
(0°7 uOISIaA) jeaseq uedy|

MSTI wim 3/ 10 o) dddy

‘spoyjawr aurfds-g pue uoreodisyur SuIsn SIAIND JO WONRIAUAD TEIAIR)

‘pue ‘suorsuawip ¢ 01 sarydeId jo worsualxy TSISeW] [eUoUIWIA ¢
‘suoigod pansapun jo (uonafop) Surddio pue ‘Suimelp

e Jo suoryod jo juswadrejus pue noljda[eg T3UNAI]

‘(yuiod pax1y ® noqe aSewrt ayy Sunelor) =o:88

pue ‘(a8eun oy Suraow) uonejsuen ‘(az1s adewnt oy Jurdueyd)
Surjess ySnomyy sofewy Jo uonelafe wojiun) TSUOHEWIOSUEI]

‘Suipeys pue Suuojod Juisn

s193{qo pue swiajed prjos jo Aerdsiq

syurod ajdurrs jo Aerdsip pue uoneso|

suoddns sazapasord oy, “seSeunt [euoISUSWIP-¢
10J sj00} yaim sawwreaSoid [eosed ayp spraoxd SOMARIS PISUBADE Y1,

‘sa8eunt oydeId ur 1¥31 20e[d 0 spuewwo) TIXI]

‘pue ‘skeydsip orydesd ajearo o) spuemwmio) TIUTMEIQ

syodJe1n Kpipowr 10 ‘ajeande ‘dn-jes o) spuewrwo) TIIOJIEID
‘yuamuoniaud Surjerado ayy dn-3as Yolym SpuewWIWIO))

*sau10333e2 SuImorjo) a1y ot
padnoid are soanmwd onydess ayy, “sejdsip soryderd feuorsuawip z Sunesd 1oy
saanpadoid diseq Jo 198 & im sounuerSord sy opiaoid SIATWIIA SOIYAEIS oy L,

*sotydeis (feuorsusunp-¢) pasueape pue ssanmurd
soryde1d -- sa[npowr om31 JO SISISUOD Y00, SHydein paduespy Syl

*£e13 pue “yoerq ‘amym snyd s10[00 3Ajom] Aefdsip ueo nok
‘JoNUOUI JOJOD B iipy “(UOISIOA W8ZT) ff pue off 3jddy ayp uo Aejdsip soydesd
sa1-iy aiqnop ;s opddy oy suoddns jijjoo], sdydean padueapy 3y

*a10w yonw pue ‘sSurmerp aandadsiad ‘soryders [euorsuswip ¢ ‘(sSwomdouow
pue 10j0d y10q) SAe{dSIp SOYIH S[qQnOP pue SSYIH d1ea1d ued nok ‘pyloo],
soiydeany padueapy sy pue [edseg uedy ynua swerdosd y ajddy
01 sorydes pajeonsiydos Suippe Jo sueswr Ksea ue Y Jowwrerdord pasusiadxd
ayy ap1aoid yorym ssunnos Jo K[rwej e st Y00 sdogdeas padueapy Syl

soqdeany pasueapy
IIT 13100,

—

P

DOTVLVD HIVMIAOS / 1ddV 8 - adeq

1201 [1e1dy pIasading

S6°6¥$
:syudwaInbay daemijog

0'7 uUOISIIA ‘leaseg uedy]
(PapUdWIUIOIX ISNoW)

{INOY PdUBYUI YuM 3/ 0 I/ :sjuawdaainbay axempaey

*3[NPOA 2wmuny X9 SN0
pue ‘saurinoy uoiSay [onuo)
‘SaUNNOY MOPUTA

‘saunnoy NUIW

‘saunnoy Suijpuef{-1udAg
‘sauninoy Iosin)

‘sonu Surwweiorg
‘swerdord owa(

(=2~ - = I ~ I I ~ I o

:Sapn[Our Y00 IX3LISNOA YL

*sKay 10s1n5 SuISn 2sNOW B JO SUONOE
a1 JlenWIIS 0) NOA MO[[E YoIgMm Saunnol sapraoid IN[00], 1X3[ISNOJAl YL
‘[EDUISSA JOU SI IT “TIAIMOY INf[OOL 31 SUISN USYM PIPUSUILIODAI ST ISNOW Y

*u193) pue J0ooy,
YSOWIdRIN AUl aaey s) “a19[dwos st wresSoid ok uaym -(,$H010,, asnows
3'3) SIUIAD ISNOUI PBAI PUB ‘SJUSWSAOUI JOSIND ORI ‘SNUSUW PUB SMOPUIM S1BII0
0} saupnoI asay} [[ed ‘vonedidde oL dofoasp nok se ‘uayj, "weidoxd reoseq
INOA UT SaUTINOJ 1XT ISNOTA Y Are[d3p Isnf 31|00 L, IX3 1 ISNOTA] 3} 3sn O,

‘swres§oid [eoseq JnoK uy SSUNNOJ ASAY) SN 0) MOY MOYS
yorym swerdord sjdwes surejuod osfe 3] "SIUNNOI X3 ISNOJA OS UBY} dI0W
pue ‘saji NN ‘SMPO SwWINUNY € JO SISISU0D JINJ00], 3XIISNOJA Y],

‘s1adojoasp aremyjos Teuoissajoxd asay
£q pasn S[OO} awres A dABY [[,NOK ‘N[00, IXd LISNOAl Y YNIM ,[39) pue
Yoo, sup aaey [1 addy ayy 10y Kepoy padojaaap Suraq suonesrdde sy jo Auey

*SIUDAD PI[JONUOI-ISNOW pue ‘Snuawr umop-find ‘sreq nudur ‘sKe[dsip 1xa1
IIm SMOpUIM urejuod Yyorya It aiddy ay 1oy sweidoid ajum ued nok ‘NYoo,
1X3] ISNOJA] 3y} pue [easeq uedy yiip ‘[I ojddy 2y 1oy uanum sweidoid 0
.[33] pue Yooy, ysouisepy ay) Surppe Jo sueawr Asea ue yim Jowsuresdoxd paoud
-1adxa oy sapraoid yorgm saunnox Jo Ajrurey e SI JIY{00], IXdLISNON Y[,

1X9 [, 9SNOJA
I1 00,

11 - 93ed DOTVLVD HIVMIAOS // 1ddV

$6°69$ 2RI [1e)dy parsadsng
(0°7 uoIsaaA) jedseq uely [Sjuawdainbay aaemyjog
Lrowdw Jo QI yum 3y 10 3y Sjudmwannbay dsempaey

‘11 9a1ddy ay) 10§ 25eMIJOS 1B-3-JO-311S ‘Alim 0) uefd oym Jo ‘Sunum mou
are oym spunuerdord [essed [fe 01 [enuassa s 3{[oo], soydernasnopy YL

*KIowsaur JO SYUBRQ 39 S1BUIA B PUB UTRW S} U3aM)3q sopnpowr wreidord
pue soiydeId yoims jueq 01 noA MOJ[e YdIym SININN UONEd0[d1 KIowauws
SOpNIOUI N[00], 3Yd ‘Ajjeur.] “NN[0OT ay) srensuowdp Yoiym swerdoid sSenueg
Alquassy pue feosed ojdwes suiejuod osje Jjjoo], sstydernasnopy oy,

*'SMOpUIM 10j sIojowered [onuos s1ag TTISEUEY [0NU0)

‘pue ‘smopuim 5as0[d pue ‘suddo ‘sazijeniu] ISJEUERN MOPUIAL
‘SnudW SpeAI pue ‘sI[qesIp ‘sd[qeus ‘sazifeniu] TISSeUTIN NUIN
{SIUSAQ JOSIND YOBI) pUB ASNOW Y] Spedy TISSEUT)y JUIAY]

{(Kamiqisia ‘1ajoereyo “8-9) s1ajowered Josind s19g TIASEUE|y JOSIN)
‘Juowuoniaua sorydernasnop Yy sajeanoe pue dn-sjog TUONEZITEN

*sa10331ed X1s ojul padnoid are asay, .%S#.:ES sorydesnasnopy JO 398
9[dwod e Jo SISISUOD 3[00], SNYdeINISNOA 3y Ul S|NPOW PuOIdS L,

‘soBewnt oydesd ur 1x93 doe[d o) spuewrwoy TIX3].

‘pue ‘safeunt ur s123[qo owyderd ajears o) spuewrro) TIUTAREIC]
spodjeln ayy Ajipowr Jo ‘gjeanioe ‘dn-19s 0} SpuemIIO) TIOJJEi0)
“uawuonaua Supesado ayy dn-jos yoiym spuewwo)) TUOTIEZITENT

*sau0gaied Suimoroy sy ojut padnoid are spueunuod sannuud
solydesd ayJ, ‘sAerdsip sorydeid Junears 10y suonerado [ejusurepuny Jo 138 € YIm
Jownwres3oxd oy apiaoid saanmwnd assyy, -seanmund somyderd ay jo sisisuod
aInpout ISHJ 3YJ, "SI[NPOW 0M) JO SISISUOD NYJ00], sdrydeinasnop ayl

*SuITPUBY-1UAAI PUB ‘SIOSIND ‘smopuim ‘snuawl umop-jind oddns
N[00, sty ur sarnpasord ay], -Ae1d pue “Yoe[q ‘Onym snjd sI0[00 dA[OM)
Keydsip ued no£ ‘Jojtuow JOjod B YA “(UOISI9A JQZ1) oI pue oy 9iddy ap
uo Aeydsip somydesd sar-1y sgqnop ayp suoddns ooy, sorydeanasnopy oy,

‘suresgoid asayp aIm 0 S13dO[IASP d1eMIJOS [RUOISSSJoId £q Pasn $[00} dwres o)
03 $$3008 3ARY NOA ‘Y00 L SINYdeINISNOIA SU) YAy ,'[33] pue Joof, SIy)
aaey I o[ddy ay) 105 Kepo1 padofaasp Buraq suonesiidde ap Jo Auepy ‘11 aiddy
3y 01 doBJIA)UL JISN JO I[AIS YSOIUIORIA Yl Suniq 01 ST JUAUE SI[Y00],
1Xd Lasnojy 3y jo Sojeue [eoydesd ayy st yyjjooy, satyderryasnopy oyl

sorgdeanasno
A [oo,

98/ST/0T dlqe[ieAy

DOTVLVD HIVMILOS // 31ddV 01 - ?3eq

$6°67$ 19314g {1819y Pa1sasing
0°T UOISIIA ‘|BISeq uely ;sjuwauinbay daemyjog
M9 yum g/ Jddy Luy ssjudwrdanbay sdempaey

jutod £q jutod ‘ydeid x -sa X ue sjoid AXiwold o
11eyd 91d ® sajeIauan ueyDId o
eiep Jo ydei§ 1eq pauorpodoid smeiq weyHleg o

:9pN[Oul SAUNNOI 3N,
‘e1ep Aerdsip AqpeowydeId o1 nok moje yorym saanpadord ¢ sureiuod Areqi sy,

sounnoy 1eu) Il

“

193]32 punos 1aseyd e sarear) Jaseyy o

Joxeads oyl woj JOI[0 B SARIUID YD o

uonjeinp pue youd pagjroads & yiim 2uo] B SPUNog JloN ©
Joyeads ojddy oy1 woiy doaq v spunog doag o

:apnjout ssunno1 ayJ, ‘urerdoid uoneordde
Ue UI §109JJ9 pPUNOS eIdUA3 0] pasn sauapadord Inoj surejuod AJeIqi STyl

34 punoyg
eAV[d ©
S3IIHpeo] © SallHaAeg © uodind o Hodiind ©
HOJMIIA © Suyopuny, o A9y, o XapnL o
OJ2A0N © QMO © ojunj], o wny, o
APONIX3L, © APOJEID © 0[0)uad o U o

:9pN[OUT SAUNNOI YL, "9JOUW PUB ‘SIOJ0D JUIISJJTP UL SIUI| MEBIP ‘USAIOS 3y} punore
1 9AOW ‘O[UM 3y} dZI[EMIUI 0] NOA MO[[e saunnol A1eiqry ayL ‘swerdoid
1no£ ur sorgdesnopung, asa 01 NOA MO[e YOIyM SaUNNOI /| SUTRIUOd AFeIqi Syl

JBIQUT o1y [1ELLN P |

:SOUBIQI] 3213 0T
paziuedio are seupnol Yoo ay ‘swerdord umo ok ur saunnol ayl Sursn
10§ suononnsut 239jdwod pue sweidoxd apdures snyd saunnoI g SUIUOD N[00,
sy, ‘swerdoxd voneordde feased 1ok ur pasn aq 03 PAUSISIP A8 YOIYM SOUNINOI
aden3ue| Ajquassy pue [eosed Surgluod 3iyq[oo], sagdeanapany, ayl

soiydeanapyang,
Al o0,

€1 - 93eq OOIVLYD HIVMAIAOS // 41ddV

§6°9€$ vttt SDIHAVED YALNIWOD

“[ELIIEW 3Y) JO UOISUSYIdWOD 90UBYUS 0) PAPN[OUT ATE SISIOIAXA [enusLIadxd
pue swaqoid snorewny *$193(qo Teuoisuswp-aaIys Suimala 0) yoeosdde wdisAs
HAOQD 3Y) YM J3peal 9y} SZURI[IUIE) 03 pajean SI Suimala (I¢ [eIsuad ‘vonippe
ul indino se jjam se ndur esiydesd jo spoyaw ures| 0) J3peal 3y Surqeud
‘sanbruyoa) sanoesaur sassnosip pue soyyders aiser Jo ade1aa0d sapnjour 3|
‘sanbruyaay paoueape ajowr J0j uonepunoj pros e sspraoxd jooq ay ‘sanifiqedes
sotydesd oiseq jo piepueis siy) Suisn Ag wIss FYOD S,IMIWUWO))
Buruuelq sprepurlg sowydern) ayy ur pasodoid sprepuels oy SMO[j0§ pue wNsAS
sorydess e 10j swiynodpe yuspuadopur a8enue pajre1ap punole Jjing SI J0oq Y],
"wNsAs soyderd 1ndwod e asn pue ‘Ajrpouws Yusws(dwr 0) PIpaIsu UONBULIOJUT
oIseq pue 3oudLradxa uo-spuey ayy sapraoid 3 "NV[O0L SOIYAEIT) PISUEAPY

UBAY [T 0] 18] I *soryde1d 1aandwod aAndeISIUY
01 uononposnul prepuels sy) Sunwiodsq Aomb st Jooqixay a8ed Spp SIYL

(€861 ‘Surysiqng E:-BEOQEV uol ULl UaANG Aq

(£1dde you op sa8reys Surppuey pue Suiddiyg)
BJIIWY YIION PISINO G6'6$/Yded §69$ et aapuig uekyf

Y]00 L, yoea sarueduiodde
YoM Qe) ISPIAIP pue 1x3) aY) ydjewr 03 paudIsap SI Japulq 3uur 331yl ANOENE
Syl “sIyjoo], Surunuerdord Inok 910)s pue aziuedIo 0) J9PUIq BHXS UR JIPIQ

TopuTy UEAY~

S3oNpo.ag ueky 1_ylQ

DOTV.LVD FUVMIIOS // A1ddV Tl - 2deg

S6°6V1$ ERIRF G {13! LI EEEELIN
(0°7 uo1S13A) [eISEJ uekyf :sjudwdInbay duaemijos
M9 yim jy Jjddy Auy :sjudwidainbay dxempaey

‘swerdord 1oy ur ssunnoi soydern paoueApy
Jo ‘solydernosno %91 3sno Sursn are oym o/pue suoneordde o8re] Sunum
are oym s1ourwres3ord asoyy 1oj [00) afgenyea e st Y[0oL JoziundQ 2po) YL

‘ureadoxd uonesridde o jo spasu
o1139ds ayp 399w Jo/pue soueuniopad aziumdo 03 (3pod 901mos agneSuey
A[quIasse ur uanlIm) saunnol Areiqr 9znuoisnd ued rowwerdoid sy g

*3]1J 91qeINDIX3 9[SUIS B UI PIUIGUIOD e
unnoI Areiqry swnuny [eoseq iy pue uoneondde sy) moN YSIp oy
uo pannbor 1o8uo] 10u ST A1eiqyy swnuny [paseqd uedy seredas sy I

:sagejueape Suimorjog sy sourures3oxd sy SI31J0 OS[e AIRIQIT 90IN0G YL

SPUoRs 1 SpU0IIs ¢ Spu0das ¢ paadg swnuny
86 sahg Mg sahg 6Tl 971§ 3po)
SWSAOIMW] TpIzIumd) A[UQ paNidwo) WeT301]

*SAUIYISOIQIY JO 9AIIS) U0 JdZINAQ 3p0)) 3Y) JuIsn PIASIYOL
a19m SI[NSAI UIMO[jOJ By, "Pa3ads UONNOGXS S[QNOP Y} ISOWIR ‘SISBD AWOS Ul
‘pue yoo1ad Ay se yonur se £q urerSoid e Jo azis a1 20npar ued JoznundQ Ay,

(*suone[ndfed pjaLy PI0dAI PUB $3SSIIVR 3[quLieA [eqois e rzumdQ
oy Aq paaoxdwi 3sow seare ay) ‘wredoid uopeordde ays jo paads
SWINUNT 3P ISLAIDUL PUR SZ[S SPOJ UILIOYS Yo1ym soroewr Jazrundo
M sosoeur parersuad-rordwon Jo suonruIquIO) Uielad saoeday ‘7

*(weadoxd ayp £q pannbas

A[reoy10ads are yorym saunnos Areiqry swnuny 250 AJuo sapajout
YoM 3pod “a°1) ,9p0D) J1dadg wrerdoid, selerouad JS[quIAsSy ayl 1ey)
0s Ja[1dwod 3y £q pareIdUST J[1y OI0BW AJLTPIULISIUL) SSYIPON [

suonouny Jofew om) suuopad 1aziwndo ay L "paads
swnuni)t aseardur Jospue wierdosd uonesipdde ue jo 9z1s apod AP 200pAL O
spaau oym Jowwrerdord paoueape ay) 10§ paudisap st 100, 1azrumdQ apo) Ay,

nziundg apo)H
IA 100,

$1 - 98ed OOTV.LVD HIVMIIOS // A1ddV

(£1dde 10u op sa8reys Suypuey pue Suiddiyg,

(sansst 9) igak xad oe.awl :uely - agepdn

‘ueky] - aepd() moyum Kep Joyioue 03
10u pnoys no£ ‘syonpoird aremijog ueky Suisn swesSoxd Aum nok J sytuows
Jo o1dnod 1smy ap unpIm 38reyd siy s1asyjo Aensn $)dBposd 31EMIJOS MaU
UO PAI3JJO SHUNOISIP YL “(sonssi 9) yeak 33d (0"6$ ST 9oud uonduosqns ayJ,

"SILIRIQI] [BOIUY3S) JISY 0) UONIPPE S[GRN{EA € ST JSN3[SMall oy Jelp pulj S1apeal
mQ ‘£3ojouyda aremijog ueky ur 1sNe] Y YPIM Funjiom are nok ey ams
Sunjew pue s1asn Ino yum yonol ur Suidaoy Jo Aem o st uedy - yepdn

a8meyd
Surjpuey [rews e JOJ YSIP UO SIIQUIISQNS O) J[QRJIEAR dPBUL JO/PUR JANIYSMAU
oy ug paysiyqnd uayp are sSunsy Sutuum oyl swerdoid 159q oy Sumpnugns
asoy) 0} sajeoynIao I8 pue sjuswied yses Surpreme ‘sisajuod Surururesdord
Josuods os[e op “S1onpord ueky JO SIASN WO SIUNNOI AIBMIJOS Pue ‘Suot
-s238ns ‘syona| Jo uoIssruqns ay) aSemMoous am ‘uekyf - depdn ysnoryy

‘s1ounuesfod pasueape pue Sutuuidaq Yioq J0J 1S
JO saponIe aimesy yoym SurwurerSoxd a3enue] A|qussse pue [2Ised UO SUWIN[OD
8u108-uo Jo Jaquinu © sureuod os[e)] "SsjudWIdUNCUUE Jonposd mau pue
‘uoneuntojur apesddn ‘spodar 8nq ‘sdn Surwureidord ‘voneWLIOJUT [ROIUYIR) HIIM
s19quIasqas spraoid o) papuaui st i) -s1onpoxd Sumnueroxd sayio pue [eosed
ueKy JO S19sn 10J JaA[sMau Ajyuouriq S,97emJos ueky St ueky - Sa_z_ﬁ

19))IISMIN AIuoAlg S, uely]

uedy °** djepdn

e e

DOTVLYD HIVMALAOS // 41ddV vl - 9ded

‘[eosed ueky pue XT3 03 3pIND 30udIJY FIIND € ‘SN1d [edsed uedy Jo ased
Ay ur ‘pue (S)YSIp 221n0s ‘fenuew mau A[a39[dwrod e sapnjout soud apesddn ayg,
(Supuey pue Suiddwys 10§ 0Sp$ snid)

QO.QM% seseesasssescsssnenenes @1 [BISEY EﬂhV- 0) oﬂ&hmu&:

00°SES "ot (0°7 uoISIdA) [eIsed uedy 01 apeandn

:are sa81eyd apeaddn oy, "aremijog ueky 01 JuswAed pue ysip

01n0S [easeq [euiduo nayy Surwnial Aq SNId [eosed ueA 01 JO (()'Z UOISIOA)
Jeosed ueky o1 apeiddn ued (+°] UOISIDA) [BOSEJ UBKY JO SIDUMO P3IalSISay

Jped [EOSBJ UCAY

sapeandn [eosed uely|

