V ASSEMBLY LANGUAGE
PROGRAMMING

This section describes how to:

* Use the Kyan Pascal assembler ("as")

* Include assembly code routines in a Pascal program
* Access parameters in Procedures

* Access values returned by Functions

This section does not explain how to write assembly language
programs. ltis intended primarily for programmers who already know
how to write assembly code and wish to use it in their Pascal programs.

USE OF THE KYAN PASCAL
ASSEMBLER

Kyan Pascal features a special purpose macro assembler called "as".
This assembler is optimized for maximum speed of assembly by limiting
features. Symbol table listings, cross reference listings, nested
macros, identifiers of greater than 6 characters, and linkable object
code modules are not supported by "as". If you need these features,
we recommend that you use Kyan's Macro Assembler.

The Kyan Pascal compiler normally pipes its assembly language output
to the assembler, which in turn produces an executable object file. I
the -s option is used on the compiler, the output of the compiler will not
be assembled. Instead, the compiler will generate an assembly
language text file to disk named "P.OUT". This assembly language file
can then be modified as required for special applications. When
modifications are complete, the assembler is then used as described
below to generate an executable file. (NOTE: To save the P.OUT file,
you must rename it using.a ".S" suffix or the assembler will overwrite it).

ASSEMBLY LANGUAGE PROGRAMMING V-1

THE ASSEMBLER AND PASCAL VARIABLES

For advanced programmers, Kyan Software makes available an
optimizer and source code version of the Kyan Pascal Runtime Library.
When used with the source library, the assembler will conditional
assemble only the library routines required in the compiled application .
program. This feature saves memory and permits large applications to
run in one program segment. It also allows the programmer to modify
standard Pascal procedures and functions to meet special
programming requirements.

RUNNING THE ASSEMBLER

The assembler "as” can be run in two ways.

Option 1: Type "as" at the prompt(%) and type
<RETURN>. Then, enter the pathname of
the file to be assembled along with any of the
options listed on the Help Screen.

Option2: Type "as" at the prompt(%), the pathname,
and the desired options on the same line.
Then press <RETURN>.

The assembler has two options which are listed below:
-1 Produces a listing.
-opathname Renames the output file.

The assembler listing and error messages can be redirected in two ways
as shown below:

> pathname Redirects output to a file
>1-7 Redirects output to a slot

An example of the above assembler options and output redirection
wouldbe: % as xyz-/-0 mno >abc

With this command, the assembler would: (1) assemble the file named
"xyz"; (2) produce an executable file named "mno*; and, (3) produce a
listing of the program with the filename “abc®.

ASSEMBLY LANGUAGE PROGRAMMING V-2

THE ASSEMBLER AND PASCAL VARIABLES

You can stop the assembler at any time during assembly by pressing
the <ESC> key. You will be returned to the system prompt (%).

NAMING AN EXECUTABLE FILE

The assembler has several features which control the name generated
for an executable file.

Option 1: Anytime the "-0" option is used, the
executable file is given the name assigned
in the option statement.

Option 2: Any source filename that ends in ".s" will
result in an executable file with the same
filename with the ".s" stripped off.

Option 3: If neither of the above options apply, then
the executabile file will be named "a.out".

GENERATING SYSTEM PROGRAMS AND
RELOCATING PROGRAMS FOR HIRES

To make the Pascal compiler generate a system file, include the
following instructions before the first line of the Pascal program.

#a (* locate # symbol in column 1 *)
_SystemFile
#

Under default conditions the compiler generates a binary file which
starts at location $800 in memory. If you want to use HiRes graphics,
on:J must change starting locations. The following steps should be
taken.

#a
_UsesHires
#

Please refer to the memory maps in Appendix B for more information.

ASSEMBLY LANGUAGE PROGRAMMING V-3

THE ASSEMBLER AND PASCAL VARIABLES

ASSEMBLY LANGUAGE
ROUTINES

Kyan Pascal accepts assembly language routines as part of the Pascal
program. This enables the programmer to include routines that are not
restricted by the structure of standard Pascal. Five rules govern the
use of assembly language in a Pascal program.

1. Assembly language routines must appear within the body of a
Program, Procedure, or Function. That is, they must appear
between a BEGIN/END block.

2. Toindicate the difference between the Pascal program and the
assembly code, assembler routines must begin with a #a label and
end with a # label. The # sign must be placed in the first column,
and the a must appear in the second column. Lines contained
between these labels are left untouched by the Pascal compiler
and are integrated into the final assembly language output file
exactly as they are written.

3. Alllabels used in assembly language must begin in column 1.

4. Labels used as part of the assembler routine must not begin with an
underscore character (_). The compiler uses labels with the format
"_xxxxx". Consequently, if you use labels beginning with an

underscore, the program may fail.

5. [tthe X register is used by an assembly language routine, it must
first be saved and then later restored. The X register is used by the
compiler as the system stack pointer. If itis used and not restored,
the compiler will lose track of all variable references (i.e., your
program will crash).

In summary, to use assembly language statements:

. Place all code between BEGIN/END statements

. Include all code between #a and # labels

. Begin all labels in column 1

. Do not use labels that begin with an underscore ().
. Save and restore the X register

NHEWN =

ASSEMBLY LANGUAGE PROGRAMMING V-4

THE ASSEMBLER AND PASCAL VARIABLES

ASSEMBLER DIRECTIVES

Kyan Pascal supports 28 assembler directives. Directives are also
known as pseudo-code since they appear in the assembly language
listing but are not part of the language of the microprocessor. Instead
they are terms understood by the assembler itself. The directives are:

Kyan Pascal Assembler Directives

Symbol

Description

ORG

EQU

DB

Origin -- indicates that the assembled code should start
at the specified location in memory (e.g., ORG $4000;
start at $4000)

Equate a label with a value which will be assigned to the
label whenever it appears in the program. In effect,
EQU defines a constant (e.g., A EQU $FF; define A to
be $FF)

Define Byte and Define Word are used to build tables
and strings that reside in other parts of the assembly
program. When the program executes, it sets the
index register to the values identified by these
directives. These values indicate where the table or
string resides in memory. (e.g., DW $FFO00; put $00
in next byte and $FF in following byte).

Least Significant Byte (LSB) is used with a
label or specific value to indicate the least
significant byte of a 2-byte hexadecimal
number (e.g., >$FF01 = $0001 or, if WLABEL
= $11EE, then >WLABEL = 00EE).

Most Significant Byte (MSB) is used with a label
or specific value to indicate the most significant
byte of a 2-byte hexadecimal number (e.g.,
<FF01 = $00FF, or, if WLABEL = $11EE, then
<WLABEL = $0011).

ASSEMBLY LANGUAGE PROGRAMMING V-5

THE ASSEMBLER AND PASCAL VARIABLES

DS

STR

IFDEF

IFNDEF

IFEQ

IFNE

ELSE

ENDIF

The asterisk is used to determine the current value of
the program counter during assembly.

The ampersand is used with a digit (e.g., &1, &2) to
represent a macro parameter.

Define Storage saves space for the number of bytes
in the expression field (e.g., ds 5;reserves 5 bytes).

String counts the number of characters in the
expression fields and puts that number in the first byte
followed by the ASCII values of each character in the
string (e.g., str ‘abc’; first byte is 3 followed by ascii
values of a, b, and c).

If Defined assembles the code following the directive if
the identifier in the expression field is defined (e.g.,
ifdef abc; assemble what follows if abc is defined).

If Not Defined assembles the code following the
directive if the identifier in the expression is not
defined (e.q., ifndef abc; assemble what follows if abc
is not defined).

If Equal assembles the code following the directive if
the expression is equal to zero (e.g., ifeq x-1;assem-
ble what follows if x was previously defined to be 1).

If Not Equal assembles the code following the directive
if the expression is not equal to zero (e.g., ifne x;
assemble what follows if x was previously defined and
not equal to zero).

Else optionally follows one of the IF- directive and

reverses the conditional assembly (e.g., ifeqy else
.... endif; assemble what follows “else" if y is defined as
not equal to 0, otherwise don't assemble what follows).

End If directive ends the conditional assembly
associated with IF- or IF- ELSE directives (e.g.,
ifdef abc endif; end the conditional assembly
associated with the IFDEF).

ASSEMBLY LANGUAGE PROGRAMMING V-6

THE ASSEMBLER AND PASCAL VARIABLES

INCLUDE Include file in expression field (e.g., include
xyz ; include the file xyz).

LST ON Listing On turns on the listing at that point.
LST OFF Listing Off turns off the listing at that point.

DSECT Data Section defines an area of memory for data
only. For example, define a data area in high
memory: dsect

ram equ $b000
abc ds 2000
dfg ds 1000
dend
DEND Data End ends the definition of the area in memory

reserved for data only.

MACRO Macro definition follows. For example, define the
macro chrout: macro chrout
ora $80
jsr cout
endm

ENDM Macro definition ends.
MEX ON Macro EXpansion ON for listing.
MEX OFF Macro EXpansion OFF for listing.

SYS SYStem is used to make the executable file a system
file (e.g., sys ; make the following assembly language
program a system file).

ASC ASCii is used to put the ASCII values to the string in the
expression field in the bytes following the ASC

directive (e.g., asc 'ok’ ; put ASCIl value of '0' and k' in
next 2 bytes).

DFLAG Define FLAG is used to define or redefine the variable
in the expression field. The value of the definition has

ASSEMBLY LANGUAGE PROGRAMMING V-7

THE ASSEMBLER AND PASCAL VARIABLES

no meaning. The DFLAG directive is used with the
IFDEF and IFNDEF directives to assemble code
required by one or more already assembled macros or
code segments. .

Do not use parentheses in assembler directives. Expressions are
evaluated from left to right, and no one operator takes precedence over
another.

ASSEMBLY CODE AND
PROCEDURES

Data is normally transmitted to a Procedure in the form of parameters.
The formal parameter list that is part of the Procedure declaration
defines the data the Procedure expects to receive from the main
program or the calling routine. The main program transmits the actual
data in the Actual Parameter List that accompanies the call to the
Procedure.

For example, the Procedure declaration AddXY(X,Y: Real); expects to
receive two real numbers from the calling routine. The main program
might call this procedure with the statement AddXY(3.5,4),.

ASSEMBLY LANGUAGE PROGRAMMING V-8

THE ASSEMBLER AND PASCAL VARIABLES

If the Procedure is an assembly code routine, it must read the
parameters from the stack which contains the list of parameters passed
to the Procedure.

Every time a Procedure is called by another routine, Pascal creates a
call frame on the stack to hold the parameters being passed to the
Procedure. The zero page location Stack Pointer (_SP) and the local
variable pointer (_Local) are used to reference the stack.

The Assembler can identify parameters only by their position in the
Stack; but, since the Assembler cannot locate those values by itself,
the programmer must identify each parameter by telling the Assembler
its location in the Stack. This means that the position of each parameter
must be calculated manually before it is used in an assembly language
routine.

To calculate the position of each parameter in the Stack you need to
understand the structure of the stack and the number of bytes used to
slore different types of parameters.

THE STACK

When parameters are passed to a Procedure, they are placed in a stack.
Each value entered on the Stack pushes a preceding value down the
Stack. It's like putting pennies in a coin-change holder with a counter.
The first penny you put in is pushed down by the next one, and the
counter records how many pennies you have saved.

It you have saved 5 pennies, the first one is at the bottom of the coin-
holder and the counter indicates that you have saved 5 cents. Note
that penny number one is at the bottom of your stack .
The following diagram illustrates this structure.
Stack Top

[penny2 |

| pennyd4 | -

[pennyd |
|l penny2 |
| Stack Bottom

ASSEMBLY LANGUAGE PROGRAMMING V-9

THE ASSEMBLER AND PASCAL VARIABLES

The Stack passed to the Procedure is identical in structure to the coin
holder. The first parameter passed to the Procedure is located at the
bottom of the stack. The others are pushed on top of it as they are
passed to the Procedure.

Examine the following Procedure declaration and the corresponding
diagram of the Stack that would hold the parameters passed to it from
the calling routine. Remember that the Stack is set aside in memory
and that _SP is used to keep track of the current value of the stack
pointer.

PROCEDURE StackSample(X,Y,Z: Integer);

The parameter list passed to this Procedure would be stored in the
Stack as

1 <--Stack Pointer (Low Memory)
2
3
4
5
6 Z(LsB)__|
7
8 YLsB)__|
9
10 X(LSB)
11 <-Stack Bottom (High Memory)

The five empty locations at the top of the Stack are used by the
computer to store information about the Stack itself. When using the
Stack, however, these positions must always be included in calculating
the position of the parameters stored in the Stack.

For now, just make sure you understand that the first parameter, X, is
stored in positions #10 and #11, that Y is in positions #8 and #9, and Z
in positions #6 and #7. The Least Significant Byte (LSB) is the lower
number and the Most Significant Byte (MSB) is the higher number.

ASSEMBLY LANGUAGE PROGRAMMING V-10

THE ASSEMBLER AND PASCAL VARIABLES

To locale a specific item in the paramelter list, calculate how many bytes
of memory separate the Slack pointer from the value you want to locate.
Since Pascal programs and subroutines always declare the parameters
before the body of the program or subroutine, it is simple to calculate
positions of parameters on the stack. The only problem with calculating
the position of the parameter is that each type of parameter takes up a
different amount of space.

The following list indicates how many bytes of memory are required to
store a type of data.

MEMORY STORAGE ALLOCATION
DATATYPE BYTES ALLOTTED

I. Real
Integer
Char
Boolean
Pointer

ll. ARRAY[1..n] OF Integer
ARRAY[1..n] OF Char
ARRAY[1..n] OF Boolean

3N N ==

ll. Value Parameter (Real)
Value Parameter (Integer)
Value Parameter (Char, Boolean)
Value Parameter
(ARRAY[1..n] OF Integer)
Value Parameter
(ARRAY([1..n] OF Char or Boolean)

1\2 -- N
=

=]

IV. Variable Parameter (Address of
parameter) (All types) 2

Make sure you understand the amount of memory required by each
data type before you try calculating positions of parameters in the
Stack. There are 4 groups of data types. The first consists of the
predefined data types. The second group consists of ARRAYSs of the
predefined types. The third contains the data types when they are

ASSEMBLY LANGUAGE PROGRAMMING V-11

THE ASSEMBLER AND PASCAL VARIABLES

passed as Values to a Procedure or Function. The last indicates the
size allotted for any Variable passed to a Procedure or Function.

if a Procedure or Function uses a Real number, that number takes up 8
bytes of memory. If a Procedure or Function uses an ARRAY [1..10]
OF Integer, the array uses 20 bytes of memory (2*n). If the Procedure
or Function is passed an Integer Value in the Parameter list, the Value
requires 2 bytes of memory. If a Procedure or Function is passed any
type of Variable, each Variable uses 2 bytes of memory.

Storage of Real Numbers

Kyan Pascal stores Real numbers as Binary Coded Decimals (BCD) and
allots them 8 bytes of storage. The 8 bits contained in each byte are
divided into 2 parts which are called NIBBLES. The part with bits 0
through 3 is called the Low Order Nibble. The part with bits 4 through 7
is called the High Order Nibble. For example:

(1 Byte = 8 Bits)

< >
7 6 5 4 3 2 1 0
|<------High Order Nibblg--------|--------- Low Order Nibble ------>}

When Real numbers are stored, they are organized as follows:

0 1st significant digit Bit 4: sign of exponent
0=+/1=-
Bit 5: sign of number
O=+/1=-
Bits 6 & 7: always zero
1 3rd significant digit 2nd significant digit
2 5th " 4th " "
3 Tth " N 6th * "
4 Sth " * 8 - "
5 1ith * " 10th " "
6 13th " " 12h " "
7 2nd digit of exponent 1st digit of exponent

ASSEMBLY LANGUAGE PROGRAMMING V-12

THE ASSEMBLER AND PASCAL VARIABLES

The decimal point for the Real number is automatically placed between
0and 1.

A Sample Stack Calculation

A sample stack calculation should clarify the concepts explained above.
The following Procedure receives an Integer from the calling routine.
Imagine that the Procedure is simply going to double that value.

PROCEDURE Double(Number: Integer);

The calling routine might contain a statement like Double(10); If the
Procedure contains assembly code, you must read the value passed to
Number by calculating Number's position in the Stack. After pushing
the Number on the Stack, 5 more bytes are added which contain
information for using the call frame. Therefore, to calculate the location
of Number, add 5 to the position of the Stack Pointer.

If the Procedure Double used 2 Values, its declaration would be
PROCEDURE Double(Number1, Number2: Integer);

The Stack containing the Parameter Values Number1 and Number2
would look like

Top of Stack
1.
2.
3
4
5
6. | Number2(Isb) ,
7 | Number2{msb
8 Numberi(Isb)
9 [Numberi(msb)
Bottom of Stack

Since you know that Number1 and Number2 are Integers and that
Integers takes 2 bytes of memory, you should be able to calculate that
the least significant byte (Isb) of Number1 is 8 bytes brom the top of the
Stack. The Isb of Number2 is 6 bytes from the top of the Stack.

ASSEMBLY LANGUAGE PROGRAMMING V-13

THE ASSEMBLER AND PASCAL VARIABLES

RULE: Each parameter is entered in the Stack as it is encountered.
Successive parameters are put on top of previous parameters.

The Stack Pointer and the Label "LOCAL"

You may have wondered about the 5 bytes pushed on the top of the
Stack. The first two are the subroutine return linkage. They contain the
address that points to the memory location with the next executable
instruction. The next 2 bytes contain the address of the previous stack
pointer. The last byte is the lexical level of the current procedure or
function.

The Kyan Assembler uses 2 predefined labels, _SP and _Local,
which always contain the address of the current and previous Variables
Stacks. A third predefined label, _T, contains the address of temporary
zero page memory that the assembly routine may use as workspace.
There can be up to 15 temporary bytes beginning at location _T and
continuing to _T+14.

The absolute locations of these labels are

_SP EQU 4
_LOCAL EQU 2
T EQU 16

These labels can be used by the assembly routine to access values
placed on the Stack.

ASSEMBLY LANGUAGE PROCEDURES
AND VALUE PARAMETERS

To access Value Parameters passed to an assembly code Procedure,
determine the offset from the Stack Pointer to the value parameter
being passed. First, load the accumulator with the least significant byte
of the Value and store it in workspace _T. Then repeat the process to
get and store the most significant byte of the Value. Repeat the
process for each Value you want to access. You must access Values by
loading their least and then most significant bytes because the 6502
processor can only handle one 8-bit piece of data at a time.

ASSEMBLY LANGUAGE PROGRAMMING V-14

THE ASSEMBLER AND PASCAL VARIABLES

The following Procedure is passed three integer parameters by a calling
outine. It also uses two integer variables that are local to the

Procedure. The assembly routine accesses the third Value Parameter,
C, and loadsitinto _T and _T+1.

.....ﬁ..‘..l.l'......'Q.....l..'...'...'....'...O‘.l.‘

PROCEDURE Access(A, B, C: Integer);
VAR
m,n : Inleger;
BEGIN
#a
LDY #9 (* the offset from _SP to "C"*)
LDA (_SP),Y
STA _T
INY
LDA (_SP),Y
STA _T+1

#
END:;

.....t..Q....Ii.."....Q'.'...."........lﬁ.i.........

COMMENTS

1. Three Integer values, A, B, and C are passed to the Procedure by
the calling routine.

2. The Procedure contains two local integer values, m and n.

3. The Parameters Stack has the following structure.

ASSEMBLY LANGUAGE PROGRAMMING V-15

THE ASSEMBLER AND PASCAL VARIABLES

Top Of Stack

_SP

<-- Contents of
<-- LOCAL

n_(Isb)_
n_(msb)_
[m_(Isb)__
m_{msb)]
| C_(Isb)__
C_(msb)_|
| B (Isb) _|
| B (msb)
| A (Isb) |

A _(msb)
_LOCAL —> Bottom Of Stack

4. Since all of the Values and Local variables are Integers, each element
uses 2 bytes of memory. (Refer to the List in the previous section for
memory size used by the different data types.)

5. The top 5 stack positions contain the Stack Pointer and the address
of the Bottom of the Stack.

6. The offset from _SP to C is the total of the 5 bytes at the top of the
Stack, plus 2 bytes each for the integer variable, m and n; i.e., 9 bytes.

7. The statement LDY#9 loads the offset value to C in the Y register.

8. The statement LDA (_SP),Y uses the offset from the _SP to load the
least significant byte of the Integer Value being passed, i.e. C, into the
accumulator.

9. That value is then stored in the temporary workspace, _T, for use
within the Procedure.

10. Finally, the Y register is incremented and then used to provide the
oftset to the most significant byte of the Value C.

ASSEMBLY LANGUAGE PROGRAMMING V-16

THE ASSEMBLER AND PASCAL VARIABLES

The general rule for calculating the position of a Value Parameter in the
Stack is

Offset (from _SP) = 5 bytes + byles of memory used by values
above the Value desired

The following example shows another example of passing parameters
by value and accounting for local variable definitions.

Procedure (x: integer);
Var b: boolean;
BEGIN
#A
i
END:;
_SP+5 Add 5 bytes for overhead
+1 Add 1 byte for local boolean, b
+6 LSB of X '
+7 MSB of X

The number of bytes used for the local variables must be added to
calculate the offset from _SP for a passed parameter.

LOCAL

You can also use the Label _LOCAL to calculate the position of a Value
Parameter in the Stack. Remember that the predefined, absolute value
of LOCALis 2. _LOCAL is the address of the bottom of the stack.

The formula for calculating the position of a Value Parameter using the
Label _LOCAL is

Offset(from _LOCAL) = Bytes used by the desired Value
+
Bytes below the Value on the Stack

The offset must be subtracted from the value of _LOCAL to reference
the parameter.

ASSEMBLY LANGUAGE PROGRAMMING V-17

_THE ASSEMBLER AND PASCAL VARIABLES

Passing Value Parameters: Summary

So far, we have discussed only Values passed in the Parameter list.
Assembly code, as we have noted, cannot identify the Pascal concept
of SCOPE that is usually involved with Parameters.

Consequently, when a Pascal routine calls a subroutine, it passes the
values in a Stack. Since all Pascal programs and subroutines list the
declaration before the body statements, the position of the passed
values is easily calculated.

A word of caution: never try to calculate the stack location of values
based upon their relative positions in the program. That stack only
contains the values passed to the subroutine. It cannot be used to
access other values or variables used by the main program.

PROCEDURES AND VARIABLE
PARAMETERS

An Assembly language Procedure reads Variable parameters from the
stack in much the same way that it reads Values. The only difference is
that when Variables are passed to a subroutine, the Stack contains only
the address of the Variables being passed. In effect, the position in the
stack that contains the Variable actually contains a pointer to that
variable. Since all pointers require 2 bytes of memory, all Variable
parameters in the Stack require 2 bytes of memory.

Once the Variable's address is determined, use the temporary
workspace 1o store the actual variable. If data manipulations within the
Procedure change the value of the Variable, the new value can be
stored back into memory by referencing the address stored in the
temporary workspace.

The following sample procedure expects to receive the identifiers, or
names, of 3 integer Variables. It then reads the address of Variable C,
which is the third Variable in the Parameter List. Once the address is
identified, the actual value of the Variable is read. The calling routine
might execute a command such as

XYZ(Length, Width, Height);

ASSEMBLY LANGUAGE PROGRAMMING V-18

THE ASSEMBLER AND PASCAL VARIABLES

The 3 Variables will be read into the Parameter Stack as the items
identified as A, B, and C.

..Q..'.Q.QQ..Q..h...t.'.tt...".‘.'ti.ﬁ‘.t..'i..h..i..ﬁ..t.

PROCEDURE XYZ(Var A, B, C : Integer);

BEGIN

#a
LDY #5 (* Load offsetto C *)
LDA (_SP),Y (* Get LSB of ADDRESS of C *)
STA T (* Save ADDRESS in _T*)
INY
LDA (_SP),Y (* Get MSB of ADDRESS of C *)
STA _T#+1 (* Save ADDRESS in _T+1")
LDY #0
LDA (T)Y (*GetLSBofC*)
STA ..

.

END:

COMMENTS

1. Since C is the last Variable passed to the Stack, it is 5 bytes from the
top of the stack.

2. LDY #5 sets the offset in the Y register.

3. The accumulator is then loaded with the least significant byte of the
address that refers to the Variable C.

4. The LSB of C's address is loaded into the temporary workspace, _T.

5. The Y register is incremented, and the most significant byte of C's
address is read.

6. The MSB of C's address is then read and stored in _T+1.

7. Once the address of C has been determined, the value addressed
by _T is loaded into the accumulator.

ASSEMBLY LANGUAGE PROGRAMMING V-19

THE ASSEMBLER AND PASCAL VARIABLES

The offset to C is calculated in the usual manner:

+ 5 bytes oftset from the Stack Pointer
+0Q local Variables
5 bytes total offset to LSB of C's address

The offset to the MSB of C is 6.
ASSEMBLER ROUTINES AND FUNCTIONS

Like a Procedure, a Function also receives data in the parameter list. It
transmits the value calculated by the Function, however, in a slightly
different manner. The manner is determined by the structure of the
Function subroutine.

Remember that a Function receives data in the Parameter List, and
then, after performing calculations that may include local variables,
stores the resultant value in the location identified by the Function’s
name. The Parameter Stack for a Function, therefore, contains the
Function's identifier.

As a rule, the Function's identifier is placed on the Parameter Stack
after the passed parameters and before the local variables.

To calculate the position of the Function's identifier, use the same
memory allotment guidelines that you used for Procedures.

The following sample Function receives an Integer Value from the
calling routine and returns an Integer which is identified by the
Function’s identifier. It also uses a local variable which is also an Integer.

AARARN A RN RRRARA R AN ANR RN R AR A AN N AR S AN RA R AN AR R d b by

FUNCTION Test(A: Integer): Integer;

VAR
B : Integer;

BEGIN
Test := 0; (* Assignment required for ISO compatibility *)

END;

RARANR R A AR AR R AN ARNANR N AR A AR AR RN A AR AR AN ARA AR AR ARNAR

ASSEMBLY LANGUAGE PROGRAMMING V-20

THE ASSEMBLER AND PASCAL VARIABLES

The Stack for this Function is diagrammed below. It is more detailed
than previous Stack illustrations because it illustrates the byte structure
of each Parameter item. Remember that the Function's identifier is
passed to the Stack after the parameters and before the local variables.

<-- Top of Stack
_SP— L | <- Lexical Level
| | <- LSBofold_SP
| | <-- MSBofold_SP
|] <- LSBof RETURN
| | < MSBof RETURN
| B | <- LSBofB
| B | <~ MSBofB
| Test | <-- LSB of Function Identifier
| Test | <~ MSB of Function Identifier
| A] <- LSBofA

| A | <~ MSBofA
_LOCAL —> <-- Bottom Of Stack

A Sample Function in Assembly Language

The following Function, XYZ, is passed three Integer Values and
returns a Boolean value with the Function's name. Note that a Boolean
requires only 1 byte of memory, so locations on the Stack are calculated
accordingly. It also declares a local Variable, X.

The code in the sample Function reads the Value of B. After
performing a series of undetermined calculations, it theoretically
determines a Boolean value. That value is stored in the accumulator.
The accumulator is then stored in the Stack location associated with the
Function's identifier.

NOTE: Conformance to the ISO standard dictates that the compiler
return an error whenever it encounters a FUNCTION written entirely in
assembly language. This occurs because ISO requires any function
identifier to be explicitly assigned a return value. For this reason, a
dummy assignment using the function identifier should be included as
the first line of a function.

ASSEMBLY LANGUAGE PROGRAMMING V-21

THE ASSEMBLER AND PASCAL VARIABLES

ﬁlﬁﬂ.t.t"‘.i.ﬁﬁ.ﬁﬁii..l"ii..'ﬁ...i'.‘Q'."..'..ﬁ........‘..

FUNCTION XYZ(A, B, C: Integer): Boolean;

VAR
X: Integer;

BEGIN
XYZ := TRUE; (* Required for ISO compatibility *)

#a

LDY #10 (* The offsetto B *)

LDA (_SP),Y (* PutLSB of B in Accumulator *)

STA T (* Store LSB of B in workspace *)

INY

LDA (SP)Y (*

STA _T+1 (*

Put MSB of B in Accumulator *)
Put MSB of B in workspace *)

LDA... (* Put Boolean value in Accumulator*)
LDY #7 (* The offset to Function Identifier*)
STA (_SP),Y (* Put Boolean value in Identifier, XYZ*)

#
END;

ARARAANAAAARAANARR AR RN R AR A AN S AN A AT AAR AN RN R OSSO AR N AR N RSN RARAR SRR SRS

COMMENTS

1. The FUNCTION XYZ is assigned a dummy value to conform to ISO
requirement.

2. The offset from the Stack Pointer to B is 10:

+5 bytes offset to first stack parameter

+2 local Integer Vanable

+1 Boolean XYZ (the Function identifier)
+2 Integer Variable C

10 bytes total offset to B

3. The program then reads the least and most significant bytes of the
Value B, storing each in the temporary workspaces, _T and _T+1.

ASSEMBLY LANGUAGE PROGRAMMING V-22

THE ASSEMBLER AND PASCAL VARIABLES

4, Finally, a Boolean value is loaded into the accumulator. That value is
then loaded into the Stack location reserved for the Function Identifier,
XYZ, which is offset from the Stack Pointer by 7 bytes.

+5 bytes offset to first stack parameter
+2 local Integer Variable X
7 bytes total offset to XYZ

Remember that the only difference between Functions and
Procedures is that the Function Identifier is placed on the Parameter
Stack. Itis located after the passed parameters and before the local
variables.

MISCELLANEOUS OPERATIONS

The following subprograms illustrate how to use assembly code to
Peek and Poke memory locations. A Poke statement is a Procedure
since it enters a value into a specific memory location. A Peek
statement is a Function since it returns the value determined by the
addressed memory location.

POKE

The following Procedure Pokes the value, Val, into memory location,
Loc. The rules for locating parameters on the Stack indicate that Loc
is offset from the Stack Pointer by 7 bytes and that Val is offset by 5
bytes. The Procedure first reads the Parameter List to determine the
memory location to be poked. It then reads the value to be entered.
Finally, after clearing the Y register, it stores the value to be poked into
the address contained in _T.

ARARRARARA R AR AR AR R R AR RR ARG RN ARG AAR SRR R AN R RAR AR AR A RO N RN RARNAASD

PROCEDURE Poke(Loc, Val: Integer);

BEGIN

#a
LDY #7 ; Offset from _SP to Loc;
LDA (_SP),Y ; Get LSB of Loc;
STA_T ; Save LSB of Loc;
INY
LDA (SP)Y : Get MSB of Loc;

ASSEMBLY LANGUAGE PROGRAMMING V-23

THE ASSEMBLER AND PASCAL VARIABLES

STA _T+1 ; Save MSB of Loc;
LDY #5 ; Offset from _SP to Val;
LDA (_SP)Y ; Load Valinto Accumulator;
LDY #0 ; Clear Y register;
STA (DY ; Store the value in the Accumulator
; in memory location _T;
#
END;
PEEK

The Peek statement is actually a Function since it returns a single value
that is based upon the Location parameter which indicates the memory
address to be read.

That value is stored in the memory location reserved for the Function's
identifier.

The following assembly code subroutine returns the value contained in
the memory location, Loc.

RARRBRRAR AR R AR AR AR RN AR R AR A R AR R AR A AR A AN R ISR AN RS R AR R AR AAAAARN AR

FUNCTION Peek(Loc: Integer): Integer;

BEGIN
Peek = 0;
#a
LDY #7 ; Offset to Loc;
LDA (_SP)Y ; Get LSB of Loc;
STA T ; Save LSB of Loc in workspace;
INY
LDA (_SP)Y ; Get MSB of Loc;
STA _T+1 ; Save MSB of Loc in workspace;
LDY #0 ; Clear Y register;
LDA (T)Y ; Load Accumulator with the
; Address being Peeked;
LDY #5) ; Offset to Function Identifier
STA ((SP)Y ; Store contents of Accumulator

; in LSB of Function Identifier

ASSEMBLY LANGUAGE PROGRAMMING V-24

THE ASSEMBLER AND PASCAL VARIABLES

INY
LDA #0 ; Load Accumulator with 0 for MSB
of return integer
STA (SP)\Y ; Store contents of Accumulator;
; in MSB of Function Identifier;
#
END;
COMMENTS

1. Peek is the reverse of Poke.

2. Read and store the memory location you want to examine in
temporary workspace.

3. Read the memory location of the Function Identifier and write the
value stored in the temporary workspace into the Function Identifier's
location.

4. Note that Peek returns an integer and Poke writes to memory only a
byte.

CONCLUSION

if you know Assembly Language programming, you should now be able
to include Assembler routines in your Pascal programs. You should
also have learned how to pass data items through parameter lists.

Since all data items are similar to Values or Variables, only those types
of data were covered in this section. Values may be passed by any of
the data types itemized in the list at the beginning of this section.
Variables are always put on the Parameter Stack in terms of their
pointers--i.e. they always occupy 2 bytes of memory allocation.

ASSEMBLY LANGUAGE PROGRAMMING V-25

THE ASSEMBLER AND PASCAL VARIABLES

(This page left blank for your notes.)

ASSEMBLY LANGUAGE PROGRAMMING V-26

VI WORKING WITH KIX

OVERVIEW

This manual has explained Kyan Pascal in terms of the file procedures
used by the ProDOS operating system. We assumed that most users
were familiar with it, and we felt that the fewer issues forced upon the
beginning user, the easier it would be to learn Pascal. Actually,
however, Kyan Pascal uses the KIX programming environment. KIX
extends the standard ProDOS functions to include features like those
supported by Berkeley UNIX.

KIX is a powerful disk and file management system that gives the
programmer immediate and direct access to any file in the system. It
also supports an extensive body of commands that let you find, move,
copy, compare, and manipulate files.

When you boot Kyan Pascal, the KIX prompt % appears instead of the
usual ProDOS prompt > . One of the powerful features of KiXis that
you can issue KIX commands whenever you have the KIX prompt. This
eliminates the need to access the ProDOS FILER when you want to
manipulate files and disks.

This section presents an overview of the KIX system. it then explains
the six groups of KIX commands.

* Directory Control

* Listing Directory and File contents

* Manipulating Files, Directories, and Volumes
* Comparing Files and Volumes

* Searching Files and Directories

* Controlling Date and Display attributes

Finally, it explains the configure utility and the use of wildcards, a
feature that makes KIX extremely versatile and powerful.

KIX OPERATING SYST! 14 ViI-1

KIX

NOTE: You can enter a KIX command whenever you have the %
prompt.

THE KIX FILE STRUCTURE

To understand the use of KIX commands and the versatility of the KIX
environment, you must understand the hierarchical structure of the KIX
system.

KIX stores files in Directories or Subdirectories. Subdirectory
information is stored in Directories. Directories are stored in Volumes.
A Volume is actually the main Directory.

You can store related files in the same directory or subdirectory, and
use directory names that are significant to the files stored in them.

The KIX storage scheme is similar to UNIX in that the command files are
stored in a directory named /BIN on the master disk. The KIX.SYSTEM
file, located in the volume directory, acts as a system shell or command
interpreter. Every command you enter is interpreted by this program
which then calls other files to perform the indicated task.

Study the following diagram carefully. It illustrates the structure of a
hypothetical system that has two Volumes concurrently mounted on
the system. NOTE: This hierarchical file structure is used in examples
throughout this chapter.

1 (Nul)
Volume1 Volume2
A A
Directory1 Directory2 Directory1 Directory2
A | | A
SubD1SubD2 | | SubD1 SubD2
I b | I |
Filel Filea FileA FileX Filea Filel
File2 Fieb FileB FileY Fileb File2
File3 FileC Filec File3
File4

KIX OPERAIING SVSTEM VI-2

KIX

The first / indicates the null directory. From here you can access all
volumes in the system. A full pathname always includes this symbol.

The diagram illustrates two Volumes, Volume1 and Volume2. Each
disk, of course, has its volume name. The Volume contains a list of all
Direclories writlen on the disk. Volume1 has two principal directories;
Volume2 also has two main directories.

Directory1 on Volume1 has two subdirectories. The first subdirectory
contains three files. The second subdirectory contains two files.
Directory2 on Volume1 contains three files.

Directory1 on Volume2 contains two files. Directory2 on Volume?2

contains two subdirectories. The first contains three files, the second
contains four files.

PATHNAMES

To access a file, identify its Volume name, Directory name, Subdirectory
name (if necessary), and Filename. KiX refers to this means of
identifying a file as a Pathname. Note that files in different directories
can have the same name without confusing the operating system. This
is because the full pathnames are different.
Pathnames are written by placing a / before each element in the path.
For example, /Volume2/Directory1/FileX accesses FileX. Locate
this file on the diagram to make sure you understand its pathname.
For practice, locate the following files on the diagram:
/Volume1/Directory2/FileA
/Volume1/Directory1/SubD2/Fileb
/Volume2/Directory2/SubD1/Fileb

/Volume2/Directory2/SubD2/File3

KIX OPERATING SYSTEM VI-3

KIX

MOVING AROUND THROUGH PATHS

Once you understand the concept of KIX pathnames and the structure
of the system, you may wonder how to move from one file to another. A
few rules govern this process. '

1 Adirectory that contains other directories or files is called a
PARENT Directory. The term is relative, i.e., a directory may be the
parent directory of a group of files, yet itself have a parent directory.
SubD1 on Volume1 illustrates this principle. Directory1 is its parent
directory.

2. You can call files within the same working directory without speci-
fying a full pathname. For example, if the prefix for the working
directory is /Volume1/Directory2/, you can call File A from File B by
simply entering the filename.

3. To call afile from a file that has a different parent directory, you
must use the full pathnames for that file. The following examples
illustrate this principle.

To move from File1 in SubD1 to Fileb in SubD2, you must
indicate the full pathname of Fileb The pathname would be
/Volume1/Directory1/SubD2/Fileb.

To move from Fileb in SubD2 to FileA in Directory2, the
pathname would be /Volume1/Directory2/FileA.

Once you understand pathnames, you can begin to use the many KIX
commands that let you create directories, move and copy files within or
between directories, compare files, or manipulate the system itself.

<X OPERATING SYSTEM VI -4

KIX

KIX COMMANDS

Every KIX command has the same format:
% command [-options] [/pathname]

At the KIX prompt % enter any KIX command. You may use either
upper or lower case letters.

Follow the command with any options that the command allows. Each
command has its own list of options. To indicate an option, precede the
option character with a - (minus) and separate multiple options with a
space.

After the list of options, indicate the pathname to the file you wish to
access. As indicated in the previous section, the extent of the
pathname depends upon your current location in the file structure and
the function you want to perform.

The following example illustrates the command that lists the contents of
a directory named Routines on a volume named Subprograms. It
produces a list of all the files contained in the directory along with
important information about each file. It doesn't matter if you don't
understand the command, as long as you can follow the syntax.

LS -1 /Subprograms/Routines

LS tells the KIX command interpreter to write a list. -lis a command
option which indicates that all information known about the files should
be displayed. /Subprograms/Routines identifies the directory
whose contents will be displayed.

The many KIX commands are grouped into the six major categories
listed in the Overview 1o this seclion.

KIX OPERATING SYSTEM VI-5

KIX

DIRECTORY CONTROL

Directories are identified, created, removed, or changed using the
following commands

PWD
MKDIR
RMDIR
CD

PWD: Print Working Directory

PWD, the Print Working Directory command, prints the current directory
you are in. ltis an extremely useful command that you can use
whenever you can't remember where you are in the system’s structure.
If you issue this command when you first boot the system, it will print
/Kyan.Pascal
If you are working on a file and can't remember which directory you have
saved it in, save the file, get the % prompt, and issue the PWD
command. The pathname to your directory will be displayed.

Once you are in a directory, any unprefixed filenames are assumed to
reside within that directory.

MKDIR: Make Directory

The MKDIR command creates a directory with the name you specify.
Two rules apply to making directories.

1. You cannot create a directory with the name of an existing
directory.

2. lf the directory you are creating is a subdirectory of another
directory, the directory name must be a valid pathname.

KiX OPERATING SYSTEM VI-6

KiX

MKDIR can not be used 1o name a Volume or Disk. To create a volume,
see the KIX commands FORMAT and CPV in the "Manipulating Files"
part of this chapter.

if the working directory is /IMYDISK,
MKDIR XTRA creates the directory XTRA on MYDISK

MKDIR XTRA/MORE creates a subdirectory, MORE, in the
directory XTRA on MYDISK

MKDIR/NEWVOL/D1 tries to create a directory, D1, on disk
NEWVOL.

The initial / indicates a new volume since the first/ means the Null
position in the file hierarchy. {f MKDIR can not find the volume for the
directory, it displays the message

INSERT DISK FOR /NEWVOL/D1
PRESS RETURN TO CONTINUE; ESC TO SKIP

If you press <RETURN>, MKDIR tries to make the directory again. If it
still does not find NEWVOL, it repeats the INSERT DISK message.

If you press <ESC>, MKDIR skips the indicated directory. If you are
creating number of directories, it goes to the next one in the list.

MKDIR will create as many directories as you indicate. Each directory,
however, must be separated by a space. MKDIR tries to create the
directories in the order they are listed. All of the directories in the above
examples could have been created with one MKDIR command:

MKDIR XTRA XTRA/MORE /NEWVOL/D1

MKDIR would first create the directory, XTRA. Then it would create the
subdirectory of XTRA, MORE. Finally, it would search the entire system
for the volume, NEWVOL -- note the initial / that indicates the Null
location. If it finds the disk, it creates the directory, D1. If it does not find
the volume, it prints the INSERT DISK message.

Once you have created a directory, store related files within that
directory.

KIX OPERATING SYSTEM VI-7

KIX

RMDIR: Remove Directory

RMDIR destroys the directory or directories listed. Before a
directory can be removed, it must be empty of all
subdirectories and all files. If the directory is not empty, RMDIR
prints a "FILE ACCESS ERROR" message. If any other problems arise,
(e.g., the correct volume cannot be located), the INSERT DISK
message is displayed.

CD: Change Directory

The Change Directory command lets you move from directory to
directory. You must use valid pathnames that clearly indicate all the
information the system needs 10 access the directory.

For example, typing

% CD /MYDISK sets the system prefix to /MYDISK. IF CD
cannot locate the volume you have requested,
the INSERT DISK message is displayed.

%CD/ sets the system prefix to the Null location. All
files must be specified with complete pathnames,
including the volume name. In multiple drive
systems, this allows you to move from one disk to
the next. .

%CD sets the system prefix to the "home' volume of the
present working directory. If the working directory
is /KIX/XTRA/SubD, typing CD sets the working
directory to /KIX. In other words, CD by itself
returns the name of the volume the working
directory is on. This command is one level lower
than the CD / statement.

As usual, when a CD command cannot locate the indicated volume, the
INSERT DISK message is displayed and the system waits until you
insert the appropriate disk and press <RETURN> or press <ESC> to
abort the command.

KiX QPERATING SYSTEM VI-8

KIX

LISTING DIRECTORY AND FILE
CONTENTS

Whenever you have the KIX prompt (%), you can execute a number of
commands that return information about the directory or file you are
working with. They are

LS ~List
LPR -- Line Print
CAT -- Concatenate

LS: List Directories or Files

The LS command lists information about the directories, subdirectories,
or files contained in the pathname you indicate. If you list a file, only
information about that file is displayed. The LS command has many
options which allow you to control which files you want to select and
what information you want to see.

LS has two basic forms: the long list, which displays everything the
system knows about the directory or file; and, the short list, which
displays only the filenames contained in a directory.

When you save a file in a directory, KIX also stores information about
that file. In the directory, it saves

Length (in blocks)
File Type (Text, Binary, Directory, System, Other)
Date/Time (created or modified)

File Length (in bytes)
Subtype Value
Protection (Read, Write, Rename, or Delete allowed)

KIX OPERATING SYSTEM VI-9

KIX

List Options

The LS command has several options that let you specify how much of
this information you want to know.

- List using the 'long’ format. This includes all of
the data items listed above except the
protection status of the files.

-p List the protection status for each file. To use
this option, you must also have selected the -|
(long format) option. A file may be protected
from reading, writing, renaming, or deleting.
The symbols used in the display are

Read protection is set
Write protection is set
Rename protection is set
Deletion protection is set
Protection not active

‘assg -

The -p option will display the categories that
are protected. For example, if the screen
displays -w-d, you may read or rename the file.
You may not, however, wiite to the file or
delete it.

-f Prints the character code abbreviation for the
file type. The file type abbreviations are:

& Text file (tx1)
* Executable file (bin)
/ Directory (dir)
@ System File (sys)
? Other
-n Do not sort the filenames into alphabetical

order as they are printed.

X CHFERATING SYSTEM Vi-10

KIX

The output produced by the LS command depends upon the options
you select and the pathname -- or lack or pathname -- you indicate. The
normal rules for pathnames apply.

If you enter the The screen displays:
command:
LS/ a long list of all volumes
available to the system
LS -i/VOL1 a long list of all files
contained in the volume
directory VOL1
LS -1/VOL1/DIR1 a long list of all files

contained in DIR1 on VOL1.

If LS cannot locate the specified volume, the INSERT DISK message is
displayed and the system waits for you to insert the correct disk and
press <RETURN>, or press <ESC> to abort the process.

You can be even more specific about the files you want to access by
including the type of file you want listed. The LS command accepts an
additional option which indicates the type of files you want listed. If you
only want information about the text files stored in DIR1 on disk VOL1,
for example, type the command

LS -1-p /VOL1/DIR1 ;txt

The file types are indicated by the codes

iixt List only text files

;bin List only binary files

dir List only directories

;8Ys List only system files
OUTPUT

Usually LS lists all the files you specify for output in alphabetical order.
Using the -n option disables the filename sort and causes LS to list

KIX OPERATING SYSTEM VI-11

KIX

each file in the order in which it is actually stored in its directory. The
option works in both short and long listing modes.

Output is usually directed to the screen. When the screen becomes
full, output stops and the message appears at the bottom of the
screen: [More).

Redirecting List Output

Although you usually direct the output of a list command to the screen,
you may sometimes want to print a hard copy and, occasionally, you will
want to save the list in a disk file.

The list command has a final option which redirects the output of the LS
command to another device -- either a printer or disk drive. To redirect
output, conclude the LS statement with a ">" followed by the slot
number of the printer or a pathname indicating the file which will store
the output. I no destination is specified, output goes to the screen.

For example, the command % LS -/-p VOL1 ;bin > 1 prints a long
listing of all binary files contained on Volume 1. This listing includes all
protection status conditions of the binary files. It prints this information
on the printerin slot 1.

Short Listings

If you omit the -1 option, the list command defaults to the ‘short’ list
format. A short list simply includes the filenames requested and their
respectlive types. The -f option which prints the character code

abbreviation can be used with the short list command. The -p option,
which lists the protection status of each file, is ignored.

Listing The Root Volume

LS uses a special output format when you specify the ‘root’ volume, i.e.
the Null position in the file hierarchy.

LS/

prints the slot and drive location, name, and number of blocks free for
each volume that is currently on the system. Finally, it prints the total

KiX OPERATING SYSTEM VI-12

KIX

number of blocks available on all volumes and the number of volumes
currently ‘'mounted’ on the system.

LPR: Line Print

The line print command prints the files you name, using the margins,
special printer codes, and other formatting options specified in the

system-configuration program. See the CFG command at the end of
this section for information about resetting the default configuration.

LPR prints the output of text files as text; all other file types are
ignored. You can stop the printer output by pressing the <ESC> key.
If LPR cannot find the file you specily, it displays the INSERT DISK
message.

CAT: Concatenate
The CAT command performs a number of functions. It lets you print the

contents of a file, copy many files into a single file, or print files using
different format options. CAT supports the following options

-n Number output lines, starting at line 1

-b Do not number blank lines

S Remove adjacent blank lines

-V Print control characters as ASCII equivalents

(for example, print ASCII 3 as [*c])

For example, CAT -n -b -s /Vol1/Dir1/Myfile, displays the contents of
Myfile on the screen. It numbers the lines that contain data and
removes multiple blank lines.

CAT prints text if the file is a text file. Other files are printed as ‘hex’
dumps.

Output Control
Normally, CAT prints to the screen. It prints 22 lines and prompts:

[more] . Press <RETURN> to continue output to the screen; press
<CONTROL>-<RESET> 1o cancel CAT. The CAT command also

KIX OPERATING SYSTEM VI-13

KIX

supports the output redirection command at the end of the line. >1
redirects output to the printer in slot 1. When redirecting output to the
printer, all CAT options are available.

Assuming that the working directory is Myfile,
CAT -n Myfile >1

prints the file, with numbered lines, on the printerin slot 1. When
printing hard copy, CAT uses an 80-column, 60 line-per-page format.

Output to another file

If you redirect output to a pathname, all the files listed are copied in the
file indicated by the pathname. Each file is appended to the preceding
file. The first source file determines the type and protection status of
the resultant file. If one of the files being copied is not the same type as
the first file, CAT closes the destination file and exits the command.
(NOTE: The format options effect the copying of text files only).

Use the CAT command to merge a number of small files into a larger
unit. The following example merges three chapter files into one large
file named Section which is contained in a directory named Book.

CAT Chapt1 Chapt2 Chapt >/Vol1/Book/Section

If CAT cannot find the files or volumes indicated, it displays the INSERT
DISK message. Press <ESC> to skip the current file and continue.
Otherwise, place the appropriate disk in the drive and press
<RETURN> 10 continue.

MANIPULATING FILES,
DIRECTORIES, AND VOLUMES

Once you have created directories and files, six commands let you
manipulate them.

CP Copies files
MV Moves files
RM Removes files

AX CPERATING SYSTEM Vi- 14

KIX

CHMOD Changes the protection status of files
FORMAT Formats a disk
CpPV Copies (Duplicates) a volume

The functions of these commands are obvious. The important point to
remember is that you use valid pathnames to identify the source and
destination files. Also note that a copy is an exact duplicate of the
original so you have two versions of the same file. Move, on the other
hand, produces an exact copy of the original but destroys the source
file.

CP: Copy

The copy command produces a replica of the source file in the
destination file. The syntaxis: CP Source Destination

CP supports one option, -i. It prompts you with an inquiry if the
destination file already exists. Hf you answer the inquiry with a Y, the
existing file is overwritten.

If the destination of the copy command is a directory, CP writes the
source file into the directory and retains the original file name. If you
specify only a filename to copy, CP will put the file in the working
directory with the source file's filename.

Examine the following copy commands.

CP File1 /Vol1/Dirt Copies File1 into the directory Dir1 and retains
the file name File1.

CP -i File1 Dir1/SFile If the file SFile already exists, CP prints the
message

REMOVE EXISTING "DIR1/SFILE" (Y ,N)

It you respond with Y, the existing file is overwritten. If you press N, the
command is aborted.

CP permits a list of source files to be copied into a destination directory.
Iif the last pathname specified is not a directory, CP automatically moves
all of the files listed into the working directory.

KIX OPERATING SYSTEM Vi- 15

KiX

CP will not copy subdirectories. If a source file listedin CP is a
subdirectory, it will be ignored. No error message will be generated.

Note: Due to a bug in ProDOS, the CP command will not function
properly in systems with only one disk drive. You must continue to use
the Filer to copy files from one disk to another.

MV: Move

The move command allows you to reset the pathname of a file. This has
the effect of moving the file or renaming it. When a file is moved, the
original file is deleted. MV allows two options

-i Prompts for the new name of each file listed
f Ignores the protection status of files

Iif the destination of the MV command is a directory, the files are simply
copied in the directory and retain their original filenames. You cannot
use the -i option when copying a file into a directory.

Note: If you specify more than two files without including the -i option,
the destination must be a pathname to a directory. Without the query
option, the system must have some other way to identify file names. By
copying them into a directory, they can retain their original identifiers.

If the last pathname listed is not a directory, MV will move the files into
the working directory.

When moving files using the -i option, MV will prompt you for a
pathname for each file listed. Typing <RETURN> without a pathname
skips the MV command for that file.

RM: Remove

The remove command deletes files and directories. Before it can
delete a directory, however, the directory must be empty. RM supports
3 options

XiX OPERATING SYSTEM Vi- 16

KIX

4 Inquire before destruction of each file
4 Destroy file regardless of protection
- Empty directory specified before deleting it

The -i option lets you make sure you want to delete the specified file. It
is a final protection mechanism. if you decide not to destroy the file, RM
moves to the next file in the list.

Deleting Directories

in general, you cannot delete a directory unless it is already empty.
(See the RMDIR command.) RM lets you delete non-empty directories
by using the -r option which automatically deletes all files in the source
directory (including subdirectories and their files) and then the directory
itself.

If you include the -i option while deleting a directory, the prompt only
inquires about the destruction of the first directory. Ifit contains
subdirectories with their own files, they will be destroyed without
warning. In addition, the -f option, which ignores the file protection
status of each file, affects the deletion of each file in the target
directory. The following command would delete all files and
subdirectories contained in the directory TESTDIR.

% RM -i - -r TESTDIR
Before the command is executed, the screen displays the message:

WARNING: TESTDIR WILL BE EMPTIED
REMOVE TESTDIR? (Y/N)

It you select Y, RM deletes all the files in each subdirectory, then those
in each directory, moving up through the file hierarchy until it deletes
TESTDIR itself.

It you are deleting non-directory files, the -r option has no effect.

KIX OPERATiG SYSTEM VI-17

KIX

CHMOD: Change Protection Mode

Every file has 4 modes of protection which determine if the file can be
read, wrilten to, renamed, or deleted. The change protection mode
command allows you to set those protections. Each option is indicated
by a character:

r Read access

w Wirite access

d Destruction access
n Rename access

In addition to indicating the type of access, you must also indicate
whether to allow or deny permission for that mode. A + (plus) before
the mode character allows the mode selected. A - (minus) before the
mode character denies permission to access that mode.

Examine the following uses of the CHMOD command.

CHMOD 4r -w -d +n File1 allows a user o read or rename the file,
File1. But the file cannot be written to or
destroyed.

CHMOD +r +w -n File1 lets the user read or write to the file. But it
cannot be renamed. The deletion status is
unchanged.

KiX OPERATING SYSTEM VI - 18

KIX

FORMAT: Format A Blank Disk

The Format command lets you format a disk while still remaining in the
system. Itis aninvaluable capability when you suddenly need a disk
and don't want to lose what you are working on, or don't want to exit the
system to enter the ProDOS filer. The syntax of the FORMAT
command is:

% FORMAT (s,d) /VolumeName
where "s" represents the slot number, and “d" the drive.
To make formatting easier on single-drive systems, FORMAT tells you
1o insert the blank disk before formatting actually begins. Insert the disk
and press <RETURN>; or press <ESC> to stop the process.
Once formatting begins, a check determines if the disk in siot "s”, drive
“d" is already formatted. If it is, a message asks you to verify its

destruction. The disk will be reformatted and given the new volume
name.

CPV: Copy Volume

The copy volume command duplicates the source volume in the
destination volume. The syntax of the CPV command is:

CPV (ss,sd) (ds,dd)

source slot of original disk
source drive of original disk

destination slot of new volume
destination drive of new volume

gg 884

CPV identifies the source disk and asks if the new volume should have
the same volume name. A positive response initiates the copy
sequence. A negative response results in a request for the new
volume name. Press <RETURN> to terminate the CPV command.

KIX OPERATING SYSTEM Vi-19

KIX

if the CPV command determines that the destination disk is already
named, it will ask you to verify the destruction of the existing destination
disk. A'Y response causes CPV to format the disk and copy the
volume. A N response terminates the CPV command.

COMPARING FILES AND
VOLUMES

KIX supports commands that let you compare files and volumes to
determine if they match. The two commands are

CMP Compare
SDIFF List differences

CMP: Compare
The CMP command compares files. The syntax of CMP is
CMP File1 File2

When CMP finds the first difference between the two files, it reports the
location of the difference as an offset from the start of the files in Block
1, Byte1. No further comparison is made after the first ditference is
discovered.

The following input and output

% CMP File1 File2
FILES DO NOT MATCH: BLOCK 2, BYTE 457

compares the two files and finds a difference in the second block of the
files. Itidentifies the difference in the 457th byte. If the files are
identical, the message FILES MATCH appears on the screen.

CMP also supports the comparison of volumes. R works in the same
manner as a file comparison, comparing the two volumes byte by byte
until a difference is located. The syntax of the command, however, is
different for volumes. The command must include the slot and drive
identification of both volumes being compared. The syntax is:

KIX OPERATING SYSTEM Vi - 20

KiX

CMP (ss,sd) (ds,dd)

source slot of original disk
source drive of original disk

destination slotvof new volume
destination drive of new volume

g8 898

SDIFF: Source Difference

Source Difference is a version of the CMP command. Itis used to
compare two text files, and prints the lines which contain differences.
After 3 differences are located, the comparison terminates. If the files
are not text files, SDIFF aborts.

SEARCHING FILES AND
DIRECTORIES

KIX supports two commands that allow you to search directories for a
specific file and to search files for a specific string.

FIND Locates a file
GREP Locates a string within a file

These commands do not have any options.

FIND: Locate File

The find command locates the specified file within the volume or
directory indicated. The extent of the search is determined by the
pathname of the directory to be searched. The command returns the
pathname of all files that match the filename to be located. The syntax
of the command is

FIND PathToDirectory -Filename

KIX OPERATING SYSTEM Vi-21

KIX

Note the *-" (minus) sign preceding the filename; this is an essential
part of the command syntax.

The path to the directory determines the extent of the search.
For example,

FIND /-File1 searches the entire system, including all volumes
currently mounted on the system, for File1. It
prints the pathname to the file everytime it finds
File1. The /indicates that the search should begin
with the root or null location in the system which
includes all volumes.

FIND/VOL1-FILE1 searches the volume, VOL1, for any directories that
contain File1. It prints the pathname to the file
whenever it locates a file with that name.

For example, assume /AnyVol/Dir1 and /AnyVol/Dir2/SubD1 both
contain a file named File1. The command

FIND /AnyVol-File1
returns the following lines of output:

/AnyVol/Dir1/File1
/AnyVol/Dir2/SubD1/File1

If FIND cannot locate the specified volume name, it displays the INSERT
DISK message. Press <ESC> to abort the command; or insert the
appropriate disk and press <RETURN>.

GREP: Locating Strings in Text Files

The GREP command allows you to locate a string of characters in any
text file. You indicate a string and a list of files or a pathname to be
searched. When GREP locates the string in a file, it prints the Filename
and the line that contains the string. The search continues until alt the
indicated files have been examined.

KiX OPERATING SYSTEM Vi -22

KIX

If the string being sought contains spaces, enclose the string in single
quotes.

GREP uses the [more] convention described previously in those
cases where the screen fills with text. Press <RETURN> to continue.
To exit the listing and retum to the system prompt, press
<CONTROL>-<RESET>.

The following command searches two files, MasterFile and TestFile for
the string, "Copyright (c)'. The resulting output obviously assumes that
such a string exists within the files listed.

% GREP 'Copyright (c)' MasterFile TestFile

MASTERFILE: Copyright (c) 1986 KYAN SOFTWARE, INC.
MASTERFILE: COPYRIGHT (C) 1983 APPLE COMPUTER, INC.
TESTFILE: Sample Program Copyright (c) 1985

Note that the search is not restricted by case. Any version of the string
will be reported.

DATE, DISPLAY, and SYSTEM
COMMANDS

KIX supports a number of commands that let you control the display and
output of system data and files.

DATE Reads or Sets the calendar and clock

C40 Sets video output to 40 columns

C80 Sets Video output to 80 columns

SD Sends the screen display to the printer
MENU Display the startup menu of system programs
INTRO Display an introduction to Kyan Pascal

KIX Display a summary of KIX commands

QUIT Exit to another ProDOS interpreter

CFG Configure the KIX system

KIX OPERATING SYSTEM Vi-23

KIX

DATE

The DATE command lets you read or set the ProDOS system date and
time files -- even if you do not have a clock/calendar card.

To display the current date and time, enter DATE and press
<RETURN>. For example,

% DATE
17-JAN-86 07:56

To set the date or time, enter DATE followed by the year, month, day,
hour, and minute two-digit values. The syntax is

DATE yymmddhhmm
Yy year {85 through 99)
mm month (01 through 12)
ad day (01 through 28-31)
hh hour (00 through 23)
mm minute (00 through 59)

No spaces are allowed between the values to be set, although you may
include any non-space, non-numeric character to make it easier for
yourself to read the entry. The following examples set the same date-
time values:

% DATE 8603241500
% DATE 86/03/24/15-00

Both commands set the calendar/clock 1o
24-MAR-86 15:00

If you set the day, DD, value to zero, the DATE command returns NO
DATE. The system time, however, is always displayed.

The DATE command is compatible with the ThunderClock and other
clock/calendar peripheral cards. If your system has one of these cards
installed, the DATE command lets you set it. When you then execute

KX OPERATING SYSTEM Vi- 24

KIX

the DATE command, the system returns the DAY field along with the
other information.

Using DATE to set the system also sets the clock card -- if the card is
set-enabled. You may also set the day-of-the-week feature on the card
by including the 3-letter abbreviation for the day of the week after you
have described the set-date command line. For example,

% DATE 8603241500 MON
sets the system calendar/clock to

MON 24-MAR-96 15:00
When you set the DATE command, the system does not check to see if
the current day-of-the-week is the correct. If the system does not have
a clock card, the day argument is simply ignored.
The day of month value is checked against the month passed to DATE.
If the specified month does not contain the number of days indicated,

the value is not allowed. For example, 31-SEP is rejected. Also, 29-
FEB is allowed only if the year is caiculated to be a leap year.

C40: Set Monitor to 40 Column Display

This command sets the 40 column monitor display. If the system has an
80 column card, it is disabled. The command clears the screen.

C80: Set Monitor to 80 Column Display

This command sets the 80 column monitor display. If your computer
does not have an 80-column card, the command is ignored.

SD: Screen Dump

The screen dump command outputs the current screen display to the
printer. The SD command defaults to the printer slot specified in the

KIX OPERATING SYSTEM VI-25

KiIX

current configuration files. If no printer slot is specified in the
configuration files, the command is ignored.

INTRO: Introduction

The INTRO command displays several pages of text which introduce
the novice to Kyan Pascal and the general programming environment.

MENU: Main System Menus

The MENU command displays the Kyan Pascal Main System Menu.
This menu lists names and descriptions of the primary Kyan Pascal
system facilities.

KIX: KIX Command Menu

The KIX command displays a summary of each KIX command. It also
lists the options and pathname formats.

QUIT: Exit KIX

The QUIT command calls the ProDOS quit routine and allows you to
invoke a different ProDOS interpreter (e.g., call another application
program). Entering QUIT at the system prompt invokes the prompt:
EXIT KIX? (Y/N). Typing "N voids the command and returns you to the
system prompt. Typing "Y" calls the ProDOS Quit Routine.

KIX OPERATING SYSTEM Vi-26

KIX

CFG: Configure the KIX System

The CFG (configure) commands let you modify the configuration of KIX
which is installed on the system disk. To modify the default
configuration values, type CFG at the system prompt (%) and the
Master Configuration Menu will appear.

ARBARRARAAAAAARASAAR AR AAARRARR A AN AR AARANARNRAANAGEARS

KIX SYSTEM CONFIGURATION

OPTI DESCRIPTION
1 Select Startup Options
2 Select Printer Options
3 Save Changes and Quit
4 Exit Without Updating Files
TYPE OPTION NUMBER

REARABAA R AR RRASARARARARRAANAARNNARAARARAARARREANR AR R ARS

The configuration program is divided into two phases -- startup options
and printer options. Select Option 1 from the main configuration menu
to set the startup options. Select Option 2 from the menu to select
your system printer specifications. Select Option 3 to install the
changes you have made. Select Option 4 to cancel the configuration
program and return to the system prompt.

Option 1: Startup Options
The startup options and their defaults are

1. Automatically load KIX command files into RAMdisk YES
2. Enable 80 column card at starup ...c..ccoceevvecerninieecnienne YES

Kyan Pascal and the KIX operating environment are compatible with
most RAM expansion cards available for the Apple Il. To make it more
convenient to use the RAMdisk capability which these cards offer, the
Kyan Pascal has an optional utility which automatically loads the files in
Kyan.Pascal/BIN directory into RAM when the disk is booted.

To use this option, your computer must have at least 128K of memory.
Check your Apple Owner's Manual for information about creating and
using a RAMdisk. Since the Ram disk is actually a portion of memory

KIX OPERATING SYSTEM VI-27

KiIX

that is set up to act like a disk drive, it performs as if you had another
system disk. Since it is also an electronic disk, it operates much faster
than any external disk. If you will be using the RAMdisk for another
application, or if you will be compiling large programs that include other
Pascal files, you will probably want to keep the system files on the boot
disk.

If the RAMDISK auto-load option is enabled, the KIX command
interpreter will automatically make a BIN directory in /RAM and move the
files stored in the boot disk's BIN directory into the one in /RAM. The
KiX command interpreter will continue to move files into /RAM/BIN until
it can find no more KIX commands small enough to fit into the remaining
space in RAM or all KIX commands are loaded. Then, when you
execute a KIX command, the KIX command interpreter will search for
the command first in /KIX/BIN, then in the system disk's BIN directory,
and, finally, in the directory specified by the System Prefix. A 256K
RAM card is needed to load all of the Kyan Pascal files into /RAM.
(Note: ProDOS only recognizes 64K of RAMdisk. If you have more
RAM available and want to use it as RAMdisk, you must use the install
program furnished by the manufacturer of your RAM card.)

Option 2: Printer Options

The system printer options and their defaults are

1. Printer Slot Numberccccoeevevvrennnne 1
2. Characters perinchcccocveurneneee. 10
3. Top Margin (inches)ccccccoveurveerienene 1.0
4. Bottom Margin (inches)cccecueu... 1.0
5. Left Margin (inches)ccceeeereeeenne 1.0
6. Right Margin (inches)ccccccvenennene 1.0
7. Line Spacingcooeeeevviervieeecne Single

To change a default value, type the option number. You will be then be
prompted for a new value. Note that margin settings are limited to half-
inch increments and to a maximum of 2.0 inches. NOTE: Before
changing any values, check your owners manual to make
certain that your printer supports the changes you want.

If you don't have a printer, specify slot 0 (zero) for the Printer slot
number. Slot 0 tells the KIX command interpreter that you don't have a
printer and to ignore SD and LPR commands.

KIX OPERATING SYSTEM Vi- 28

KiX

If you select the Printer Configuration Menu, you can change the
output slot number, the margins, the type size, and the line spacing of
printer output.

Option 3: Installation

When you are ready to save the configuration update and quit CFG,
select option 3 from the Main Configuration Menu. CFG will write the
changes to your KiX system disk and give you instructions for powering
down the computer and rebooting the system. By resetting the system
in this manner, you are assured that the new configuration options will
be properly installed on all copies of the files (particularly those loaded
in RAMdisk). (Note: Configuration changes are installed only on the
volume which was booted to load KIX. To make sure your configuration
changes are properly installed, boot the volume "/KIX" (Disk2, Side 1)
and then make the desired changes).

Option 4: Exit Without Installation

If you change your mind after calling the CFG program and want to quit,
select Option 4. This command will abort the configuration program and
return you to the system prompt.

ABBREVIATIONS AND WILD
CARDS

KIX supports the use of abbreviations and wildcards when writing
pathnames and strings. Directory abbreviations decrease the amount
of typing required to enter KIX commands. Wildcards can be used to
replace elements of filenames.

Directory Abbreviations

The two directory abbreviations are used to refer to the current working
directory and the parent directory.

refers to the working directory
refers to the parent directory

KIX OPERATING SYSTEM VI-29

KIX

Note that each dot represents one position up the path hierarchy from
the current file.

The "." abbreviation may be used wherever a directory name is used.
Assume that the working directory is /Vol1/Dir1. Examine the following
commands and the actions taken.

CP NVol2/File1 . copies File1 from VolI2 to the present working
directory, Dir1 on Vol1. The pathname of the new
file is /Vol1/Dir1/Filed.

MV JFile1 /Vol2 moves File1 in the present working directory to
Vol2. The pathname of the new file is /Vol2/File1.
The original file, /Vol1/Dir1/File1, is destroyed by
the move.

The ".." abbreviation represents the parent, or source, directory of the
Working Directory. In effect, it moves the system 1 step up the path
hierarchy from the Working Directory -- or 2 steps up from the current
file. If the working directory is /Vol1/Dir1/MyDir, ".." represents the path
/Vol1/Dir1.

You can use the ".." abbreviation wherever a directory name is
appropriate. Assume that the Working Directory is /Vol1/Dir1/MyDir.
Examine the following command and the action taken.

CD ../LastDir changes the Working Directory from
/Vol1/Dir1/MyDir to /Vol/Dir1/LastDir.

If the Working Directory is the Volume itself, the .. command sets the
system to the Root or Null volume. If the Working Directory is /Vol1, the
command

LS..

sets the source directory to the Root volume and produces the special
listing for the Root volume which includes all volumes currently
mounted on the system, the size of blocks, and the number of blocks
available.

KIX OPERATING SYSTEM Vi - 30

KIX

More examples of using directory abbreviations are provided in the next
part of this section, "Useful KIX Command Lines."

Wildcards

KIX supports two Wildcards that can be used to replace strings and
characters in filenames.

? represents any character in a filename
* represents any string in a filename

These two wildcards give you a great deal of power when you issue KIX
commands. If you can't remember the exact name of afile, use a
wildcard in the filename before searching forit. If you want to locate
variations of a string in files, use wildcards to identify parts of the string.

? (Question Mark)

The character wildcard, ?, represents a single character. An example
illustrates the use of wildcards more clearly than an explanation. The
command |

LS File?

produces a short list of all files in the present Working Directory that are
named File followed by another character. If the directory contains File,
File1, File2,...File9, the command

LS File?
lists all of these files. If you wanted to copy all these files into another
directory, the wildcard lets you transfer all the files with a single
command that replaces ten copy statements.

CP .NewDirectory/File?

copies files 1 through 9 from NewDirectory into the Working Directory.
The names of the files remain the same.

KIX OPERATING SYSTEM Vi-31

KIX

In another use of ?, the statement
CAT ?2AT

lists the files contained in the present Working Directory that begin with
any letter followed by the letters "AT.”

* (Asterisk)

The * wildcard is a more powerful character substitute. It can represent
any string of characters, including a null or empty string. Using this
wildcard, you can quickly search through volumes and directories for
files about which you know very little. For example, the command

CAT-nM*.S

prints the contents, with lines numbered, of any file in the present
working directory whose name begins with the letter "M" and ends with
"S"

As another example, the command
RM /AnyVol/AnyDIR/M*.S
deletes any file located on the volume, AnyVol, in the directory,

ANYDIR, whose filename begins with an "M" and ends with a *.S". If the
following files existed on the disk, they would be removed.

/AnyVol/AnyDir/MouseFile.S
/AnyVol/AnyDir/ModelTest.S
/{AnyVol/AnyDir/Memo.S

See the next section, "Useful KIX Command Lines," for more examples
using wildcards.

<iX OPERATING SYSTEM VI-32

KiX

Using Wildcards

The use of wildcards is very logical. They may be used in the source
filenames of the pathnames you specify in the KIX command. They
cannot be used if the system needs to know the exact file or path.

They cannot be used in destination pathnames since the system would
not know what character or string to substitute for the wildcard.
Wildcards are also not valid in the source pathname of some KIX
commands. For example, the make directory command, MKDIR, can
not use wildcards in the directory name since the system would not
know what the name should actually be.

KIX provides another command which is intended to let you see exactly
which files match the wildcard usage you are entering before any
actions are actually performed on those files. ECHO lets you specify a
pathname which contains a wildcard character. ECHO then prints the
complete pathnames of all files which match the wildcard specification.
Practice with this command so that you become familiar with wildcards
before actually using them in KiX commands.

In general, any KIX command which accepts a list of pathnames as valid
source file identifiers will also allow wildcards in the source filename.
The following lists these commands.

Command Wildcard Usage

RMDIR Allowed

LS Allowed

LPR Allowed

CAT Allowed
ECHO Allowed

CP See Note 1

MV See Notes 1 and 2
RM Allowed
CHMOD Allowed

FIND Allowed

GREP See Note 3

KIX OPERATING SYSTEM VI-33

KIX

Note 1: Wildcards are valid in the source pathname
if the destination pathname is a directory.

Note 2: Wildcards are valid in the source pathname
when the -i option is also selected.

Note 3: Wildcards are not permitted in the search
pattern string. They are allowed, however,
in the list of filenames to be searched.

One final note on wildcards. You may be tempted to try to combine the
two wildcards. Don't bother. The * string wildcard will always include the
? character wildcard.

The next part of this section contains examples of common KIX
command lines.

USEFUL KIX COMMAND LINES

This section provides many examples that will further your
understanding of the KIX environment. You will find most of these
commands immediately relevant to your programming needs.

KIX Command Line Action Taken

RMDIR * Delete all empty directories in the
working directory

RMDIR FILE.? Delete all empty directories in the

working directory whose filenames
begin with FILE. and have no
extensions or a single letter extension.

LS -1*.S >LSFILE List, using the long format, all files in
the Working Directory which end in .S

KX OPERATING SYSTEM VI-34

KiX

LS />1

LS /ANYVOL

LS /ANYVOLS

LS /ANYVOL! ;SYS

LPR /AVOUAPL*.TXT

CAT WORK.O > FINALO

CP /AVOL*.

CP DiR1/*. S DIR2/*.0

Write the output to the text file,
LSFILE in the Working Directory.

List the names, slot and drive
locations, and blocks free along with
the total number of blocks free to the
system and number of volumes found.
The listis printed on the printer in slot
1.

List the names of all files stored in
volume directory /ANYVOL.

List all the files stored in volume
/ANYVOL, expanding all
subdirectories stored in the volume
directory ANYVOL.

List the names of all system files stored
on the volume /ANYVOL, expanding
all subdirectories stored in the volurne
directory ANYVOL, but listing only
system files in those subdirectories.

Search the directory volume whose
name is AVOL. Print those files which
have names beginning with "APL" and
ending with ".TXT".

Concatenate all files in the directory
"WORK" whose names end in “.O" to
the file FINAL.O in that working
directory.

Copy all files in volume "AVOL" into
the present Working Directory. (Same
as CP /AVOL?).

Copy all files with names ending in ".S"
in directory DIR1 and files with names
ending in *.O" in directory DIR2 into
the present Working Directory.

KIX OPERATING SYSTEM VI-35

KIX

CP /VOL1/F*

CP /VOL1/FILENAME

MV /NOL1/*.

MV 4*

MV FILE1 FILE2
MV D1/F1 D2/F2 D3/F3 .

RM + *

CHMOD -w -n V1/DIR1/*

FORMAT (6,1) /NEWVOL

Copy all files in /VOL1 with filenames
beginning with the letter "F" into the
working directory using the same
filename.

Copy /VOL1/FILENAME into the
Working Directory using FILENAME as
the name in the destination directory.

Copy all files in volume "AVOL" into
the present Working Directory,
destroying each source file.

Rename each file the Working
Directory, and request the new name
to be entered at the keyboard.

Rename FILE1, FILE2.

Move files F1, F2, F3 from their
separate directories into the present
Working Directory keeping the same
filenames.

Empty then destroy any directory in
the present Working Directory.

Deny writing and renaming permission
to all files in the directory /V1/DIR1.

Format the disk in slot 6, drive 1, and
name the volume NEWVOL. FORMAT
checks the disk to see if it has
recognizable contents. If it has,
FORMAT requests verification before
destruction.

<X OPFERATING SYSTEM VI-36

KIX

CPV (6,1) (6,2)

FIND ./VOL1 -MYFILE

FIND / -MYFILE

FIND /V* -LOSTFILE

GREP apple *

GREP ‘apple computer'/

Copy the volume in slot 6, drive1 to
the disk in slot 6, drive 2. If the target
disk is recognizable, request
verification of the destruction of its
contents. CPV also verifies the use of
the source disk's volume name,
permitting another name to be entered
in its place on the new volume.

Search the present Working Directory
and VOL1 for a file named "MYFILE."

Search all mounted volumes for the
file, "MYFILE". Unlike other volume
arguments, / used with the FIND
command extends the search to every
directory in every mounted volume.

Search all volumes whose name
begins with "V" for the file named
"LOSTFILE". The search extends to
all directories in those volumes.

Search all text files in the present
Working Directory for the string "apple”
or "APPLE" or any upper/lowercase
combination of those characters. Print
the filename and line of text containing
this string.

Search all text files on the top levels of
all volumes for the string "apple
computer” in any combination of
lower/upper case letters. Printthe
filename and line of text.

KIX OPERATING SYSTEM VI-37

KIX

NOTES FOR KIX USERS

The following notes will help KIX users use the Kyan Pascal system
more efficiently.

Moving KIX To A Hard Disk Drive

There is an alternative to moving the BIN directory into a RAM disk. If
you have a hard disk drive, you can load the system files to that disk.
This method optimizes KIX because it leaves all of /RAM free yet still
allows very fast access to the KiX system.

To move KIX to your ProFile, boot the system using the Kyan Pascal
Disk. Then enter the following commands:

% MKDIR /PROFILE/BIN (creates the command directory)

% CP KIX.SYSTEM /PROFILE (moves the KIX shell program to the
hard disk)

% CP BIN/* /PROFILE/BIN (copies all files in /KIX/BIN to the hard
disk's BIN directory)

To move KiX to a SIDER, perform the same operations, but use the
volume name HARD1 in place of PROFILE. If KIX.SYSTEM is the
first .SYSTEM file in the hard disk’s directory, you will boot directly into
KiX in the ProDOS subsystem.

One Drive Users

Due to the amount of code used to create the the KIX environment, it
would be a good idea to remove the less frequently used KIX
commands from the BIN library on your Kyan Pascal disk. The most
useful commands are: PWD, CD, LS, CP, RM, and FORMAT. The
other commands can be stored on a second disk (use the same
Volume Name) and loaded when you need them.

KiX OPERATING SYSTEM VI - 38

KIX

The RESET Key

If you press the <CONTROL>-<RESET> keys during the execution
of any KIX command, you will be returned to the KiX prompt. The
message "RESET KEY PRESSED" and the name of the aborted
command will be printed in the upper-left corner of the screen.

If you press the <CONTROL>-<RESET> keys at the KIX prompt, you
will cause a warm-restan of the system.

Short-cuts for Advanced Users

1.

Advanced users can call the Editor, Compiler and Assembler
directly from the KIX system prompt using the following command
syntax.

Editor: ED pathname
Compiler: PC pathname -options > redirection
Assembler: AS pathname -options > redirection

Running KIX on an Apple lle or lic gives you an additional command
line editing feature. When you are entering a command line
argument, you can type <CONTROL>-X to erase the entry and
start over again at the system prompt.

Advanced users can pick up some space on the disk and
streamline the KIX process by removing MENU, INTRO, KIX, and
CFG files from the BIN directory. The KIX.SYSTEM program will
then boot directly into KIX instead of executing the MENU program.

KIX command options and output redirection characters can be
placed anywhere on the input line (just make sure that pathnames
are properly located). In addition, options can be specified in
groups following a single - (minus) character . For example,

% LS >1 /VOLUME1/DIR1 -LP
prints a list of files in directory /VOLUME1/DIR1 to the printer in slot

1 using the long listing format with protection printed. The + (plus)
character can be used with the CHMOD command.

KiX OPERATING SYSTEM Vi-39

KIX

5. KIX works best when moved to a hard-disk volume, leaving the
RAMdisk free for other uses. However, a 256K (or larger) RAMdisk
is big enough to load the KIX environment and all the Kyan system
files. ProDOS only recognizes 64K of RAMdisk. If your card has
more RAM available and you want to use it as RAMdisk, you must
use a RAM install program which is furnished by the manufacturer of
your RAM card.

CONCLUSION

Once you begin to master KiX, you will appreciate just how powerful
and efficient it is. Since all of the Kyan Pascal files are KIX files, you will
soon bypass the menus and, using KIX commands, control the system
directly.

KX OPERATING SYSTEM W1 - 40

VI REFERENCE GUIDE

The Reference Section lists all the Reserved Words, Predefined
Functions, Procedures, and Routines that are used in this
implementation of Pascal.

The items are listed in alphabetical order to provide easy reference to
any word or command. They are not grouped by types of words or
routines since someone using this section might not know in advance
the type of word or command.

Each entry contains a brief description of the purpose and syntax of the
particular item. A series of comments then provide useful information
about that item. Finally, it cross references related items.

This section is by no means exhaustive and is not a substitute for a
complete, technical guide to Pascal. The entries provide general
information that would be usefukin normal programming situations. See
the bibliography at the end of the Introduction for a list of more technical
guides to the Pascal programming language.

REFLRI:NCE VII - 1

ABS

PURPOSE
SYNTAX

COMMENTS

Returns the absolute value of an expression
ABS (expression)

A predefined function.

The expression can be real or integer.

The absolute value of the expression is the
same as the value of the expression if that
value is positive. If the value of the expression

is negative, the absolute value is the opposite
of the value of the expression.

REFERENCE Vi -2

ADDRESS

PURPOSE Allows the programmer to determine the
address of a variable by referencing its
identifier.

SYNTAX IntegerVariable =

ADDRESS(Variableldentifier);

COMMENTS This function returns the address of the first
(lowest) memory location allocated to the data
type which corresponds to the identifier
specified.

For example, to find the starting address of an
array of Integers, you would declare the array
as usual and declare an integer VARiable for
the array's memory location. Then, the
statement IntForMemLoc := ADDRESS(Array
of Integers) would put the 2 byte address of
the array into the intForMemLoc integer
variable.

SEE ALSO POINTER

REFERENCE VIl - 3

AND

PURPOSE Returns the value TRUE if both expressions
joined by AND are TRUE
SYNTAX AANDB

COMMENTS A Boolean operator.

AND evaluates two or more BOOLEAN
expressions. All expressions evaluated by
AND must be true for the results to be TRUE. If
any expression evaluated by AND is FALSE,
the evaluation returns a FALSE condition.

SEE ALSO OR
NOT

HEFERENCE V-4

ARCTAN

PURPOSE Returns the arctangent of an expression.

SYNTAX ARCTAN(expression)

COMMENTS A predefined function.
The expression can be an integer or a real
number. ARCTAN retums a real value
expressed in radians.

SEE ALSO Ccos

SIN

REFERENCE VII - 5

ARRAY

PURPOSE

SYNTAX
COMMENTS

Declares a structured data type or a variable
consisting of a number of defined elements of
the same data type which share the same
identifier

ARRAY [index-type] OF component-type
A predefined type of data.

An ARRAY is defined under the TYPE or VAR
declaration. Inthe declaration, the borders of
the ARRAY and the type of elements
contained in the ARRAY must be identified.

The index-type may be an Integer, Char,
BOOLEAN, or Subrange data type.

The component-type may be any predefined
or user-defined data type.

To refer to an individual component of an
ARRAY, refer to its variable-identifier, i.e. its
name, and its index component. For example,
if the Variable, Table, is identified as a type,
TableType, and if TableType is defined as an
ARRAY [1..20] OF Integer, the expression

Table[5]
refers to the 5thinteger in the ARRAY.
Any element in the ARRAY may be used
anywhere in a program as long as the data type

of the element is the same as the variable that
refers to that element.

REFERENCE VI'- 5

ARRAY (cont.)

An ARRAY may contain several dimensions.
For example, the declaration
ARRAY[1..5,1..10] OF INTEGER defines a grid
5 rows long and 10 columns wide. Each
position in the grid can hold an INTEGER
value. For more on multidimensional ARRAYS,
see the chapter on ARRAYS in "Programming
Techniques.”

SEE ALSO "Programming Techniques”
TYPE

REFERENCE VII - 7

This page is intentionally blank

SEFERENCE VI -8

BEGIN

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Marks the start of a program, subprogram, or
sequence of statements controlled by a loop
statement

BEGIN
statement,
Statement

END.

or

BEGIN
statement,
statement

END;

The BEGIN statement, a predefined word, is
always associated with a corresponding END
statement. The two words delimit a program,
subprogram, or block of statements.

END

FUNCTION

PROCEDURE

REFERENCE VII - 9

BOOLEAN

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

A data type which returns either a TRUE or a
FALSE value

Identifier : BOOLEAN

This predefined data type is declared in the
Variable section of the program.

BOOLEAN variables are either TRUE or
FALSE.

A BOOLEAN variable may represent an
expression that uses the BOOLEAN
operators: AND,'OR, and NOT. For example, if
"Correct” is a BOOLEAN variable, the
expression

Correct:= (X>10) AND (X<20)

will be TRUE only if X is an integer between 11
and 19.

AND
NOT
OR

REFERENCE VI - 10

CASE

PURPOSE

SYNTAX

COMMENTS

Controls the selection of one of several
possible statements depending upon the
value assigned lo the case selector

CASE case-selector OF
case-indicator : stalement,
case-indicator . stalement

END;

The CASE statement defines a case-selector
which can be an expression. Depending upon
the value the case-selector equals, the
program executes the statements identified by
the corresponding case-indicator. Multiple
statements governed by a case-indicator are
enclosed between BEGIN/END braces.

For example, the following statements ask the
user to enter a selection from a menu. The
program then executes the appropriate
PROCEDURE which must be defined
elsewhere.

Wiriteln('Enter selection’);
WriteIn('1. Read');
Writeln('2. Wiite');
WriteIn('3. Quit");
Readin(Choice);
CASE Choice OF
1:Read;
2 : Write;
3 : Quit
END;

REFERENCE VIl - 11

CASE (cont.)

This sequence of statements asks the user to
select a value from a menu. Eachitemin the
case list of values is associated with a specific
PROCEDURE that has already been defined.
If the user enters *1," for example, the program
executes the PROCEDURE named "Read.”

SEE ALSO OF

REFERENCE VI - 12

CHAR

PURPOSE

SYNTAX
COMMENTS

a predefined ordinal data type that consists of
single character values.

Variable : CHAR

Chars can be defined by their ordinal values
(e.g., the ASCI value).

A Variable that is defined as a CHAR type may
represent any ASCIl symbol as text. This
includes all letters, symbols, numbers included
as text, and non-printing control codes such as
carriage-return.

CHAR constants must be enclosed in
apostrophes (or single quotes).

To print an apostrophe character in text, type a
double apostrophe and enclose it in
apostrophes.

The following examples illustrate valid
character constants:

IAI

Z
'5.

>

REFERENCE VI - 13

CHAR (cont.)

Strings of CHAR are similarly enclosed in
apostrophes. The following statement writes a
string of characters to the screen:

Writeln('Hello");

When the ORD function is used with a CHAR
data type, the result is ASCII value of the
character. ORD{'Q'), for example, returns the
integer 81, which is the ASCII value of the
character, Q.

SEE ALSO ORD
STRING

TYPE

[EFERENCE Vii - 14

CHR

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Converts an integer expression into the ASCIl
characler representied by that value

CHR(%)
A predefined function.

The parameter x must be an Integer between 0
and 255.

The CHR function can be used to indicate non-
printable ASCII values.

ORD

REFERENCE Vil - 158

CONCAT

PURPOSE When used with Strings, joins or concatenates
the strings into a single string

SYNTAX Concat(String1, String2,String3);

COMMENTS Concat is not a predefined procedure. It must
be included in the Pascal program using the
include feature. Concat combines multiple
strings into a single string element. A String
must be defined as an ARRAY OF Char before
this command is used.

The File Concat must be “included” in the
declaration’section of the Program, Procedure,
or Function that uses the Concat statement.
The constant Maxstring must also be defined
in the declaration section. Maxstring
determines the absolute length of the string.

If a program contains a String identified as
String1 which contains the characters ‘Any
and a String identified as String2 which
contains the characters 'Body ‘', the
statement: Concalt(String1,String2,String3);
adds String2 to Stringt and stores the
resultant string in the variable String3.
String3 equals the string: ‘AnyBody '

SEE ALSO Index
Length
String
Substring

REFERENCEVII- 16

CONST

PURPOSE
SYNTAX

COMMENTS

SEE ALSO

Identifies data as a constant value throughout
the program

CONST
identifier = value

Like TYPE, the word CONST, a predefined
data type, identifies a list of items. The value
can be any data type, even character or string.
The data items listed under CONST retain their
assigned value throughout the program.

Constants are listed immediately after the
program declaration, and they are defined by
using the equal sign (=) to equate the igentifier
with its value.

FUNCTIONs and PROCEDUREs may declare
their own constants, but those values are

significant only within the FUNCTION or
PROCEDURE in which they are declared.

TYPE
VAR

REFERENCE Vil - 17

COS

PURPOSE Returns the cosine of the expression
SYNTAX COS(expression)
COMMENTS A predefined function.

The expression can be an integer or a real
number which is expressed in radians.

COS returns a value that is a real number.

SEE ALSO ARCTAN
SIN

\EFERENCE VIi - 18

DISPOSE

PURPOSE Frees the memory space assigned to hold the
pointer variable which had been reserved by
the NEW statement.

SYNTAX DISPOSE(PointerVariable)

COMMENTS When pointer variables are created by the
NEW statement, they remain in memory even
after the locations they point to are no longer
relevant to the program.

The DISPOSE statement, a predefined pointer
procedure, destroys the pointer variable and
frees the memory locations it occupied.

SEE ALSO NEW

REFERENCE VIl - 19

DIV

PURPOSE Returns the whole number that results from
dividing integer value A by integer value B

SYNTAX A DivB
COMMENTS A predefined operator.

fA=12andB=4, ADIVBretuns 3. IfA=14
and B = 4, A DIV B also returns 3. DIV returns
only the dividend of a division. It does not
return fractional parts or remainders. Division
by zero will return an error.

SEE ALSO MOD .

REFERENCE VIl - 20

DO

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Indicates the beginning of a series of
statements that are regulated by a FOR or
WHILE statement.

FOR control-variable TO control variable DO
BEGIN

statement 1,

statement 2

statement 3

END;

A syntactical part of conditional statements.
DO indicates the beginning of one or more
statements. The sequence must be
terminated with an "END;" statement.

FOR

WHILE

REFERENCE ViII - 21

DOWNTO

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Regulates a FOR loop countdown from a
higher o a lower number.

FOR control-variable DOWNTO control-
variable DO

A syntactical part of a FOR statement.

The value of the first control-variable must be
greater than the value of the second variable.

DOWNTO indicates the value that terminates
the loop.

FOR

4

REFERENCE Vii-22

ELSE

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Indicates an alternate set of instructions that
the program executes when the condition
controlling an IF statement is FALSE.

IF control-expression THEN
BEGIN
statement ;
statement
END
ELSE
BEGIN
statement,
statement
END;

The line preceding an ELSE statement
requires no punctuation.

If the ELSE statement executes only 1
command, the BEGIN/END braces are not
required.

IF.THEN

REFERENCE VIl - 23

END

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Terminates a series of statements associated
with a BEGIN, CASE .. OF, or Record
statement.

BEGIN
statement;
statement

END.

Every BEGIN statement must have a
corresponding END statement. The END
statement that terminates the program is
punctuated with a period.

The END statement that terminates a
PROCEDURE, a FUNCTION, or a sequence of
actions which form a block within the programis
punctuated with a semicolon(;).

The line preceding an END statement requires
no punctuation.

The rule for punctuating a statement that
precedes an END statement holds true even if
that line is itself an END statement. For
example:

BEGIN
statement,
statement,
BEGIN

statement;
Statement
END

END.

BEGIN

' ~EFCRENCE Vil -24

EOF

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

A BOOLEAN function that remains FALSE
until the file pointer reaches the End Of File
marker

EOF

The EOF standard Boolean function is used
when reading files. Since the program usually
does not know how many items are in the file,
the EOF function allows the program to
continue reading data until it reaches the end
of the file. -

The following statements continue to retrieve
information stored in the file, StudentName,
until the EOF marker is read.

WHILE NOT EOF(StudentName) DO

BEGIN
statements
END;
EOF
GET
READ

REFERENCE Vil - 25

EOLN

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

A predefined BOOLEAN function that remains
FALSE until the <RETURN> key is pressed
or a return ASCII character is read (e.g., from a
disk file).

EOLN

The EOLN variable is used to test entry of data
from the keyboard. It remains FALSE until the
<RETURN> key is pressed or a return
character is read.

The READLN statement resets the EOLN
variable to FALSE.

EOF
READLN

AEFERENCE VIi - 26

EXP

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Calculates the value of the base of the natural
logarithm raised to the power indicated by the
parameter.

EXP(X)
A predefined function.

EXP computes the exponential of the para-

meter X; thatis, eX, where X can be an integer
orreal datatype. The EXP function returns a
value of type Real.

For example, EXP(3) raises the value of the
natural logarithm to the power of 3. The resuit
is 20.085537.

LN

REFERENCL VIl - 27

FALSE

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Indicates a BOOLEAN logical state
FALSE

FALSE is a predefined Boolean constant.
BOOLEAN expressions, yield either a TRUE or
a FALSE state. The identifier FALSE may be
used in expressions that evaluate that state.

For example, if the variable STATUS is defined
as a BOOLEAN variable, the following
expression evaluates the variable and takes
the appropriate action:

CASE Status OF
TRUE : X = 10;
FALSE : X =20

END;

If the BOOLEAN variable Status is FALSE, the
program sets the vaiue of X to 20.

BOOLEAN
TRUE

REFERENCE VI - 28

FILE

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Creates a user-defined TYPE that consists of a
sequence of elements of the same TYPE. A
FILE redirects input and output from the
keyboard and screen 1o an external source,
usually a disk.

VAR
identifier : FILE OF component-type,

A Reserved word.

A FILE may consist of any component-type,
either predetermined or user-defined. Thatis,
a FILE may consist of integers, real numbers,
pointers, records, or arrays. A FILE, however,
cannot consist of any structured type that itself
contains a FILE.

When a FILE is declared, the compiler creates
a FILE buffer. The buffer is referred to by the
FILE identifier followed by a caret(*). The
buffer can hold only one data item of the
declared component-type at a time.

The PUT statement writes the FILE-butfer
contents 1o the external device.

The GET statement reads the contents of the
external device into the FILE-buffer.

GET
PUT

REFERENCE VIl - 29

FOR

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Creates a loop that executes a series of
statements until the conditions defined in the
FOR statement are satisfied.

FOR control-variable = low-value TO high-
value DO
BEGIN
statement,
statement
END;

The FOR statement increments the control-
variable by 1 each time it executes the
commands it controls. This process continues
until the control-value equals the high-value of
the control loop.

The lower and upper limits of the loop are
defined by using the := assignment indicator.

If the FOR loop only executes one action, the
BEGIN/END braces are not required.

The FOR statement can also use the
DOWNTO statement. In this case, the first
value in the control-loop is the high value and
the second is the low value.

TO

DOWNTO

REFERENCE Vii - 30

FUNCTION

PURPOSE

SYNTAX

COMMENTS

Declares the statements associated with it as a
single subprogram. It receives data from the
main program, performs calculations using that
data, and returns a single value which is
identified by the name assigned to the
FUNCTION.

FUNCTION identifier parameter list :
parameter-type) : resultant-type ;

CONST
VAR

BEGIN
statements
END;

This predefined identifier names the
FUNCTION. The main program refers to the
FUNCTION by this name.

The parameter list contains identifiers for the
values that the main program passes to the
FUNCTION. The data type of each element
passed must be included and is separated
from its identifier by a colon () . Multiple
parameters are separated from each other by a
semicolon (;) . The entire parameter list is
contained within parentheses.

The data type of the value returned by the
FUNCTION is declared by placing the data type
after the parameter list and separated from it by
acolon(:) .

REFERENCE VI - 31

FUNCTION (cont.)

SEE ALSO

Any constants and variables-used by the
FUNCTION must be declared before the body
of the FUNCTION. Such constants and
variables are considered to be local to the
FUNCTION.

The body of the FUNCTION must include one
statement that assigns the value determined
by the FUNCTION to the FUNCTION-identifier.

The main program simply names the
FUNCTION, including the parameters to be
passed to it, and the FUNCTION immediately
returns the value which is then associated with
the FUNCTION's name/identifier.

PROCEDURE

"Programming Techniques”

REFERENCE VIl - 32

GET

PURPOSE

SYNTAX
COMMENTS

a standard procedure that transfers one
element of a file to the associated buffer
variable.

GET(Fileldentifier);

GET retrieves a component from the FILE
indicated by the File Identifier. It stores that
data in the file buffer and then advances the
file pointer to the next position.

If another element of the FILE exists, the End
Of File Variable remains FALSE. If no further
component is found, the EOF variable is set to
TRUE.

This command is effective only after the FILE
has been RESET and the first item stored in a
FILE buffer.

The following statements RESET an existing
file and read its contents, which are a series of
REAL numbers, printing them to the screen.

VAR
List : FILE OF Integer,
Number : REAL;

BEGIN
RESET(List, ‘Pathname'),
Number := List?;
GET(List);
WRITELN(List)

END.

REFERENCE Vil - 33

GET (cont.)

This sample program will continue to read the
FILE until it reaches the End Of File marker.

For a full discussion of commands used in file
manipulation, see the chapter on FILEs in
"Programming Techniques.”

SEE ALSO PUT
WRITE

WRITELN

REFERENCE Vii - 34

GOTO

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Forces the program to make an unconditional
branch to another statement. The statement
that is branched to must be labeled by an
unsigned integer.

GOTO label
A nonstandard Pascal statement.

Labels must be declared under a LABEL
heading at the beginning of the program. The
maximum size of the label is 4 digits.

The label that identifies the line must begin in
the 1st or 2nd column of the program line. Itis
followed by a colon (:) and then the program
line.

Labels that are used in PROCEDURESs and
FUNCTIONs must be declared locally.

GOTO may make either forward or backward
jumps to labels within a FUNCTION or
PROCEDURE. GOTO may also be used 1o
make an unconditional jump out of a
FUNCTION or PROCEDURE. GOTO should
not be used to enter a FUNCTION or
PROCEDURE from the main program.

LABEL

REFERENCE VII - 35

HGR

PURPOSE Puts that the computer into the High
Resolution graphics mode.

SYNTAX HGr,;

COMMENTS HGr is not a predefined Pascal procedure. The
routine must be included in the Pascal program
using the file Hires.l. The high resolution
graphics procedures enable the programmer
to draw graphic illustrations on the screen.

To use high resolution graphics, the Pascal
program must be relocated by a

#a
ORG $4000
#

declaration before the declaration of the main
program.

The HGr procedure is contained in the file
HIRES.1 which must be “included" in the
program declaration.

The command Tx exits the High Resolution
Graphics mode.

SEE ALSO Tx

Section |ll, "Graphics”

AEFERENCE Vi - 36

IF

PURPOSE Tests a conditional expression and performs
specific actions if the condition is TRUE (an
.optional ELSE clause performs specific actions
if the condition is FALSE)

SYNTAX IF condition THEN
statement
ELSE
statement;

COMMENTS A predefined conditional statement.

IF the condition is TRUE, the statement
following the word, THEN, is executed. If the
condition is false, the statement following
ELSE is executed.

If the THEN or the ELSE clause should
execute several statements, they must be
enclosed in BEGIN/END braces. Statements
within the BEGIN/END brace are punctuated
with semicolons.

Note that no punctuation is allowed between
THEN and the statement it executes, or
between the THEN clause and the ELSE
clause.

REFERENCE Vil - 37

IF (cont.)

Also, all rules governing the use of END apply
it BEGIN/END braces are used. Note the
punctuation of the following sample IF diagram:

IF condition THEN
BEGIN
statement;
statement
END
ELSE
BEGIN
statement;
statement
END;

The ELSE clause always modifies the nearest
IF-THEN statement. Consequently, if you nest
IF-THEN-ELSE statements, you may
inadvertently associate an ELSE clause with an
inappropriate IF-THEN statement.

SEE ALSO ELSE
END
THEN

REFERENCE VII - 38

IN

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Determines if an element is part of a set
Condition variable IN set-name

IN, a set operator, determines if the variable is
included in the set. A conditional statement
usually controls the statements that will be
executed depending upon the results of the
IN test.

For example, if Weekdays is a set of days from
Mon to Fri, and the user enters the string,
Sun, the following statements will execute the
statement controlied by the ELSE statement.

Writeln('Enter a day');
Readin(Day);
IF Day IN Weekday THEN
Writeln(Day, ‘is a weekday’)
ELSE
Wiriteln(Day, ‘is not a weekday')

SET

REFERENCE VII - 39

INDEX

PURPOSE

SYNTAX
COMMENT

SEE ALSO

Returns the position of one String within
another

Index(String1,String2),

Index is a not predefined Pascal procedure. It
must be included in the Pascal program using
the Index.l file.

A data type of String must be declared in the
program before this function can be used.
The constant Maxstring must also declare the
absolute length of any string entered.

The File Index must be "included” in the
declaration section of the Program or routine
that uses the Index function. Files are
*included" by using the #i command.

The function returns the position of String2
within String1. For example, if String1 = '‘Baby’
and String2 ='a ', the statement:
Index(String1,String2); returns the value 2 to
the Function identifier Index. This is the
location where the first string contains the
character "a". If String2 is not found in String1,
the value of Index equals 0.

Concat Length

String Substring

REFERENCE Vii - 40

INPUT

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Indicates information will be retrieved from the
default file, which is the keyboard

PROGRAM Identifier(INPUT, Output);

INPUT, a predefined file type, identifies a TEXT
file that takes information in the form of ASCII
values from the keyboard. The information is

stored in memory until it is redirected to
another device.

FILE
OUTPUT

REFERENCE VIl - 41

INTEGER

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Denotes positive or negative whole numbers
X:INTEGER

Integer, a predefined data type, may identify
any variable. X s identified as an INTEGER
data type. No commas or decimal points may
be used to indicate an INTEGER.

The maximum size of an INTEGER is known by
the predefined CONSTANT, MAXINT.

Kyan Pascal supports integers from
-32768 to +32767.

MAXINT

REFERENCE Vii - 42

LABEL

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Identifies a decimal integer which is used with
the GOTO statement

LABEL
XY,

A reserved ldentifier.

A LABEL must be declared at the beginning of
the program. The values X and Y may be any
number containing up to 4 digits.

The number identified as a LABEL is placed at
the beginning of the line that includes the
statement to be labeled. The LABEL is
followed by a colon (3) .

For example, if 33 is declared as a label, a
GOTO 33 statement would execute the
following statement:

33: Writeln('Jump here.’);

GOTO

REFERENCE VII - 43

LENGTH

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Returns the actual length of a String.
Length(String);

Length is not a predefined Pascal procedure.
The String must be declared as an ARRAY of
CHAR, and the file Length.l must be
*included" in the declaration of the Program or
routine that uses the Length command. Files
are included by using the #i command.

The value of Maxstring, the maximum length
of the string must also be declared.

If String1 = ‘letters °, the statement
Length(String1); returns the value 7.

Use the Length statement to eliminate trailing
spaces in writing strings to output. The
following statement writes only the actual
characters contained in the string to the
screen: WriteIn(String1: Length(String1));

Concat Index

String Substring

AEFERENCE Vii - 44

LN

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Calculates the natural logarithm of the
parameter

IN(X)

A predefined function.

The value of X must be greater than 0.

X may be either an integer or a real number.

The LN function returns a real number.

EXP

REFERENCE Vil - 45

MAXINT

PURPOSE Equals the largest integer the compiler can
accommodate
SYNTAX MAXINT

COMMENTS A predefined constant.

in this implementation of KYAN PASCAL,
MAXINT = 32767.

REFERENCE VI - 46

MOD

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Returns the value of the Remainder that
results from the division of one integer by
another.

AMODB

A reserved arithmetic operator.
fA=12andB=4, AMODBequals 0. IfA=
14 and B = 4, AMOD B equals 2.

B cannot be equal to 0.

DIV

REFERENCE VIl - 47

NEW

PURPOSE

SYNTAX
COMMENTS

Allocates space in memory for a dynamic
variable which is referred to by a pointer
variable.

NEW (PointerVariable)

NEW, a predefined Pointer Procedure, is used
in dynamic allocation routines which allow the
programmer to have direct control over
memory locations.

Dynamic allocation routines require that space
in memory be set aside to hold an address of
another area in memory. The first area is called
a Pointer because it points to the other
address.

Since you cannot anticipate where the
computer will store the Pointer, you must
identify the area by a variable. You must also
make sure that the area contains no residue
from other programs. NEW insures that
whatever area used to store the pointer is
initialized before a value is stored in it.

For example, if you declare a pointer variable as

VAR
Pointer : AINTEGER

you must clear the area the will contain the
value stored in POINTER. The body of the
program must issue a

NEW(Pointer);
command.

‘REFERENCE Vii - 48

NEW (cont.)

SEE ALSO

Afler execution of NEW(Pointer), the
pointer contains the address of the newly-
created dynamic variable.

DISPOSE

"Kyan Pascal Programming”

REFERENCE VII - 49

NIL

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Indicates the last element in a linked list of
dynamic variables.

Pointer®.Lint := NIL;

NIL is a predeclared identifier used in linked
records to indicale which is the last record in
the list.

REMEMBER: records are linked backwards --
the first entered is the last retrieved.

Consequently, declare the pointer for the first
record as NIL. When you want to read the list
of records use

WHILE Recordldentifier <> NIL DO

Then WRITELN the record buffer, update the
pointer, and retrieve the next record.

The program reads through the list of records
until it finds a pointer equal to NIL.

DISPOSE
NEW

REFERENCE VIl -50

NOT

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Returns the opposite value.
NOT expression
A Boolean operator.

If Ais an expression that is TRUE, NOT A
returns FALSE.

If Ais an expression that is FALSE, NOT A
returns TRUE.

AND
BOOLEAN
OR

REFERENCE VIl - 51

ODD

PURPOSE Tests an expression to determine if it equals
and odd integer

SYNTAX ODD(expression)

COMMENTS The ODD function is a predefined Boolean
function. It returns TRUE if the expression has
an odd value and FALSE if it has an even
value.

The expression must either be or yield an
integer value.

SEE ALSO BOOLEAN

AcFERENCE VII - 52

OF

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

When used with the CASE statement, selects
an action from a list of statements. The action
selected depends upon the CASE-selector
variable.

CASE variable OF
variable 1. statement 1,
variable 2. statement 2;

variaBIé n. statement n
END;

CASE ... OF Statements list a series of
possible actions. The action selected by the
program depends upon the variable.

Each possible variable is listed along with the
statement of the action to be taken. The
variable and the statement are separated by a
colon () .

OF is also used in declaring arrays and sets.

CASE

REFERENCE Vil - 53

OR

PURPOSE A Boolean operator that returns TRUE if either
of the expressions associated by OR is TRUE.

SYNTAX AORB

COMMENTS The expression A OR B returns the Boolean
value TRUE if either the A expression or the B
expression is TRUE. It returns a FALSE value
only if both A and B are FALSE.

SEE ALSO AND
BOOLEAN

NOT

REFERENCE VIl - 54

ORD

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Returns the numerical position of a parameter
X as an integer in the ordered sequence of
values.

ORD{expression)

A predefined Function. The parameter must
be of an ordinal type.

if a set, MONTHS, is declared that contains the
months of the year, the expression

ORD(JAN)

returns the value 0. Positioning in a set always
begins with the zero position.

Since integers are a subset, the ORD value of
an integer is the integer itself.

ORD can be used to return the ASCIl value of a
character.

PRED
SUCC

REFERENCE VIl - 55

OUTPUT

PURPOSE Indicates data will be printed to the default file,
i.e. the screen

SYNTAX PROGRAM Identifier(Input, OUTPUT);

COMMENTS OUTPUT is a TEXT file that takes data stored in
memory and directs it to the output device.

SEE ALSO FILE
INPUT
TEXT

REFERENCE VII - 56

PACK

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Commonly used in Pascal to copy components
of an unpacked array into a packed array

PACK(UnpackedArrayldentifier, Index,
PackedArrayldentifien)

Large computers often reserve a group of
memory locations for each element in an Array.
The PACK command is used to compress the
data and free any unused memory space.

The PACK procedure requires the identifier of
the unpacked array, the starting index value of
the section of the array where packing should
begin, and the identifier of the PACKED
ARRAY.

Kyan Pascal automatically PACKs all arrays.
This command is useful for copying
components of arrays.

PACKED
UNPACK

REFERENCE VII - 57

PACKED

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Indicates that an ARRAY consists of packed
elements

PACKED ARRAY [1 .. 6] OF Char;

Mainframe computers often allocate a number
of memory locations for each element of an
ARRAY. A character ARRAY, however, needs
only one position for each character. PACKED
forces each element of the character ARRAY
into 1 byte so that the extra memory space is
not wasted.Kyan Pascal automatically packs
ARRAYs so this command is not needed by
the programmer.

UNPACK

PAGE

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Skips from the current page to the next page
of a TEXT file.

PAGE(Fileldentifier)

The PAGE procedure causes the system to
clear the file buffer by executing a WRITELN
statement. It then advances the output to a
new page of the specified text file or clears the
screen and moves the cursor to home.

This procedure can be used only on TEXT
files.

TEXT

REFERENCE VIl - 58

POINTER

PURPOSE Allows the programmer to write to or read from
specific memory locations.

SYNTAX PointerVariable := Pointer(MemLocation);

COMMENTS POINTER, a non-standard command, allows
the programmer to write data directly into a
specific memory location. It can also be used
to read the contents of memory locations.

POINTER can be used to PEEK and POKE
memory locations.

For example, if you declare a pointer variable,
assign a location in memory to the variable and
then write the dynamic variable. The resulitis
equivalent to a BASIC PEEK command. The
value stored in that memory location will be
written to the screen.

The reverse process is used to POKE data into
a specific memory location. First declare the
pointer variable and assign it a specific location
in memory. Then equate the area referred to
by the pointer with a value.

SEE ALSO ADDRESS

PRED

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Returns the data item that precedes the
parameter

PRED(parameten

A predefined Function.

The parameter must be part of an ordered
sequence of items. It cannot be the first item in
the sequence.

If a set is defined as {sun, mon, tues},
PRED(mon) returns sun. There can be no
PRED(sun).

ORD

SuccC

REFERENCE VIl - 60

PROCEDURE

PURPOSE

SYNTAX

COMMENTS

Declares that the statements associated with
the name of the PROCEDURE are a single
subprogram. It may receive data from the main
program in the form of parameters. These
parameters may or may not be transmitted back
to the main program.

PROCEDURE Identifier(Parameter list.
Parameter Type);

CONST
Constant ldentifiers;

VAR
Variable Identifiers;

BEGIN
statements
END;

A reserved word.

The Identifier names the PROCEDURE. The
main program refers to this PROCEDURE by
the name. The PROCEDURE declaration may
contain a list of parameters, or values that the
main program passes to the PROCEDURE.

The main program may pass any type of datato
the PROCEDURE with the exception of FILE
data types, but all parameters must be declared
in the parameter list. The list contains the
identifiers of the values to be passed as well as
the data type of each parameter.

REFERENCE VIl - 61

PROCEDURE (cont.)

It a parameter is declared to be a Variable, the
variable identifier will represent the value that
results from the action of the PROCEDURE
when control returns to the main body of the
program.

This is an important difference between
FUNCTIONs and PROCEDUREs.

A FUNCTION returns one value 1o the
main program, and that value is
represented by the FUNCTION's
identifier or name.

A PROCEDURE may affect the value of
any Variable identifiers that are part
of its parameter list.

Identifiers declared within the PROCEDURE
are local to that PROCEDURE and are not
accessible to other parts of the program.

The body of the PROCEDURE is marked by a

BEGIN and END bracket. The END statement

is terminated with a semicolon to differentiate it
from the END of the program.

The main program calls the PROCEDURE by
declaring its name and including the
parameters to be passed to it within
parentheses. The list of parameters must be
identical to the parameter list declared in the
PROCEDURE.

SEE ALSO FUNCTION

"Programming Techniques”

RE-ERENCE VIl - 62

PROGRAM

PURPOSE
SYNTAX
COMMENTS

Identifies the entire program to the compiler
PROGRAM Identifier(Input,Output);

A PASCAL program must first be identified as a
PROGRAM and given a name that identifies it.
The Input and Output statements are optional,
but they indicate that input will come from the
keyboard and that output will be directed to the
screen.

If any other device files are used, their
identifiers must be included in the Input,
Output list.

The structure of a program is outlined below:

1. PROGRAM declaration

2. Label declaration

3. Constants

4. Variables

5. Subprograms: Functions and
Procedures

6. Main BODY of the program

REFERENCE VIl - 63

PUT

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Wirites the contents of a file buffer to a FILE.
PUT({file-identifier);

PUT, a predefined file procedure, writes the
contents of a file buffer, identitied by the
FileName followed by the Caret sign, e. g.
FileName®, to the file associated with the File
Identifier.

Before executing the first PUT statement,
however, the file must be opened for writing by
a REWRITE command and the data must be
stored in the FILE bufter variable -- whichis
usually the File Name followed by a caret sign 4.
The following statements declare a FILE and
input data to that FILE.

VAR
List : FILE OF Integer;
Number : Real;

BEGIN
REWRITE(List,'Pathname');
WRITELN('Enter a Number.");
READLN(Number);

List* := Number,
PUT(List)
END.

Note that the Pathname is the identifier that
indicates the pathname of the file that will hold
the data on the storage device.

GET

RE-ERENCE VIL- 64

READ

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Retrieves data from a FILE without appending
an End Of Line marker to the data retrieved

READ(Fileldentifier, variable- identifiers)

The READ procedure gets data from an input
file and stores the data in a variable.

If the File Identifier is omitted, the default is the
INPUT file (i.e., the keyboard).

Multiple variable identifiers may be included,
but they must be separated by commas.

The READ procedure retrieves data from the
current file until has found a value for each
variable in the variable list.

When READ is used with a TEXT file, it
performs an assignment statement, and
executes a GET command. For example,
READ(Text1,ldentifier); equals
Identifier := Text1%;
GET(Text1);

READLN WRITE
WRITELN

REFERENCE VII - 65

READLN

PURPOSE
SYNTAX

COMMENTS

Reads a line of data from a text file

READLN(Fileldentifier,
Variableldentifier)

READLN, a predefined file procedure, reads a
line of data; that is, it gets the contents of the
current line of a TEXT file until it reaches an
End Of Line marker.

if the File Identifier is not specified, READLN
assumes the INPUT file, which is the keyboard.

The Variable identifier indicates the name of a
place in memory that holds the line untii the
program does something with it.

The following statement retrieves the entire
line entered by the user before he presses the
<RETURN> key.

READLN(Entry);

It stores the data entered in a variable named
Entry.

AE~ERENCE VIi - 66

READLN (cont.)

SEE ALSO

The following statements read a line from a
TEXT file named Manuscript and then print
that line on the screen.

READLN({Manuscript,Sentence);
WRITELN(Sentence);

The READLN statement reads the values of all
listed variables that occur within the line. I
necessary, it will read all the lines it needs to
assign values to the variables contained in the
current line.

READ

WRITE

WRITELN

REFERENCE VIl - 67

REAL

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Indicates decimal or fractional numbers
Variable : REAL

Real, a predefined data type indicates that a
value contains a fractional or decimal
component. They may be expressed in
decimal or exponential notation. The following
are valid expressions of REAL number:

5.78 1.0
999.87654 4.1E2

Exponential notation is used with numbers that
are 100 big or too small to write conveniently in
decimal notation. The expression “4.1E2" in
the above example represents 4.1 muitiplied
by 10 raised to the power of 2, i.e. 4.1 x 100, or
410. The number after E indicates the number
of decimal places that follow the number that
precedes E.

Positive or negative values after E determine
how the decimal point is moved.

21E2 = 210
2.1E-2 = .021

Negative values that precede the E can yield
strange results since such values are actually
expressions consisting of a negative operator
and a real number.

INTEGER

REFERENCE Vii - 68

RECORD

PURPOSE

SYNTAX

COMMENTS

A structured data type defined by the user that
consists of fields that may themselves be
different data types

TYPE
record-type-identifier = RECORD
field-name : data-type;
field-name : data-type
END;

A RECORD is defined under the TYPE label
because it is a user-defined TYPE of data. The
record-type identifier is followed by an equal
sign and the declaration, RECORD.

The fields of the RECORD are then named.
The name is followed by a colon and the data
type of the field. A field may itself be any data
type, including other records.

To refer to a field in a RECORD, specify the
name of the record and the name of the lield,
separating them with a period. Names of fields
must be unique within each record, but other
RECORD types may uses the same field name.

For example, The RECORD, Students,
contains the fields, Name, ID, Grades. Name is
a STRING data type, ID is also a STRING,
Grades is an ARRAY of real numbers. The
expression Students.Name

REFERENCE VII - 69

RECORD (cont.)

SEE ALSO

returns the STRING of characters that
represent the name of the student. Similarly,
Student.Grades, returns all of the grades
contained in the ARRAY. A RECORD,
Classes, may also contain a field called Name.

A RECORD may contain a RECORD in one of
its fields. The RECORD that is afield in
another RECORD will itself contain fields. To
access the fields of a RECORD within a
RECORD, use a 3 part identifier:

RECORD.FIELD(itself a record).FIELD(in
second record).

The WITH statement allows the program to
identify a RECORD. Subsequent references
to the fields within the RECORD may be made
directly. The following statements print the
student's name in the RECORD, Students.

WITH Students DO
Wiritein(Name);

RECORDS may also contain Variant fields.
See the section on Records in "Programming
Techniques.”

TYPE

WITH

"Programming Techniques”

"REFERENCE VII-70

REPEAT

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Executes one or more commands until a
condition becomes true

REPEAT
statement;
statement;
UNTIL conditional-expression,

REPEAT, a predefined insiruction, tests for a
TRUE condition only after it has already
executed the sequence of commands. It
continues to execute and then test the
condition until the condition is FALSE.
Consequently, the statements contained in
the loop are always executed at least once.

The REPEAT statement is terminated by
UNTIL and the conditional expression. Any
number of statements, therefore, can be
included within the loop without framing them
in BEGIN/END braces.

UNTIL

REFERENCE VI - 71

RESET

PURPOSE Opens a FILE for reading data and sets the file
marker to the beginning of the FILE

SYNTAX RESET(file-identifier);

COMMENTS If the FILE is not already opened for reading,
RESET automatically OPENS the file and
places the file marker at the beginning of the
FILE. Ifthe FILE is not empty, the value EOF,
the End Of File marker, is FALSE. Otherwise,
the value of EOF is TRUE.

Before the GET statement can be used to read
the data in the FILE, the first element of the file
must be entered into the file buffer, which is
designated by FileNameA.

Always use the RESET statement before
irying to read a FILE. The following statements
RESET a pre-existing file for reading and print
its contents to the screen.

VAR
List : FILE OF Integer;

BEGIN
RESET(List);
WHILE NOT EOF(List) DO
BEGIN
Number := List?;
WRITELN(Number);
GET(List)
END
END.

AEFERENCE VI -72

RESET (cont.)

Note that the NOT EOF condiiion keeps
checking the file until the End Of File marker is
found.

SEE ALSO EOF

GET

REFERENCE VII - 73

REWRITE

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Opens a FILE for writing data and sets the file
marker to the beginning of the file

REWRITE(file-identifier, PATHNAME);

The REWRITE procedure readies a file for
input. It sets the file marker to zero and the
End Of File marker to TRUE. Any residual data
in the file is cleared.

In Kyan Pascal, the File Identifier must be
equated with a Pathname which locates the file
on the storage device. The name of the file on
the disk need not be the same as the file
identifier used by the program.

RESET

REFERENCE Vii - 74

ROUND

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Returns the closest Integer value of a Real
number

ROUND(number)

The ROUND predefined function always
returns an integer:

ROUND(5.3) returns the value 5.
ROUND(5.6) returns the value 6.

MAXINT
TRUNC

REFERENCE ViI - 75

SET

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Identifies a user-defined data TYPE consisting
of elements all of which must be the same data

type
Setldentifier = SET OF base type

A set is merely a collection of items that are all
the same type of data. The base type
identifies the kind of elements that may be
included in the set.

Define a SET by listing its elements in
brackets. If a SET is defined as a SET OF
INTEGERS, it may contain up to 256 elements.
A set can not contain REAL numbers.
Consecutive items in a SET may be indicated
by the subrange symbol (..).

All of the following are valid sets:
[Sun,Mon,Tues,Wed,Thurs,Fri,Sat}
{1,5.8,9,15]

[32,65,70..75]

The last set above contains the Integers 32,
65, 70, 71, 72, 73, 74, and 75.

The SET operators, =, <>, <=, =>, and IN are
used to manipulate sets.

IN TYPE

*Programming Techniques”

RzFcRENCE VI - 76

SIN

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Returns the sine of the expression
SiN(expression)
A predefined Function.

The expression can be either an integer or a
real number which is in radians.

SIN returns a real number.
ARCTAN
COS

REFERENCE Vil - 77

SQR

PURPOSE Returns the square of the expression
SYNTAX SQR(expression)
COMMENTS A predefined function.

The expression can be any arithmetic type.

SQR returns a value that is the same data type
as the expression.

SEE ALSO SQRT

AcreRenNCE Vi -78

SQRT

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Returns the square root of the expression
SQRT(expression)
A predefined function.

The expression can be either an integer or a
real number.

SQRT returns a value that is a real number.

If the value of the expression is less than 0, an
error results.

SQR

REFERENCE Vil - 79

STRING

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Indicates a user-defined data type that consists
of an ARRAY OF Characters

String = ARRAY[1..Maxstring} OF Char

String is not a predefined Pascal procedure.
You must declare it to be an ARRAY OF CHAR.
Once a String has been declared, you must
define Maxstring as the absolute length of
the String that can be entered.

To use any of the String Functions (Length,
Index, or Substring) or the String Procedure
(Concat), you must "include" the appropriate
File in the declaration section by using the #i
command and the name of the Function.
Concat

Index

Length

Substring

“ REFERENCE VIi - 80

SUBSTRING

PURPOSE
SYNTAX

COMMENTS

SEE ALSO

Extracts part of a String from that String

Substring(String1 String2, Begin Position,
length of String extracted)

Substring is not a predefined procedure.

The String must be declared as an ARRAY OF
Char. The File Substring.l must be
“included" using the #i command.

The function uses 4 parameters. The first
parameter is the Source String Identifier
(String1). The second parameter is the
destination string variable (String2). The third
parameter is the first position of the String to
be isolated. The fourth parameter is the length
of the string to be extracted from the first
string.

For example, if String1 equals
‘Extraction’, the statement

Substring(String1, String2, 1, 7)

yields String2 equal to Extract.

Concat Length

Index String

REFERENCE ViI - 81

SUCC

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Retums the next item in a list of items
SUCC(parameter)

The parameter must be part of a list of items.
SUCC, a predefined function, returns the
succeeding value.

The parameter can not be the last item in the
set. In the set{sun, mon, tues}, SUCC(mon)

yields tues. SUCC(tues) is an invalid
expression.

PRED
ORD

“REFERENCE Vii - 82

TEXT

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Identifies a predefined FILE TYPE that
consists of characters.

VAR
identifier : TEXT

TEXT creates a File of characters. ltis different
from a user-defined file of characters in that it is
divided into lines. Each line in the TEXT file is a
series of characters that is terminated by an
End Of Line (EOL) marker.

INPUT and OUTPUT are TEXT files because
they simply transmit text between the

keyboard, the monitor, and any external
devices.

TEXT Files are written by using the statement
Wiite(text-file-name, identifier)

TEXT Files are read by using the similar
statement

Read(text-file-name, identifier)
The identifier is the variable name that holds
the characters while they are being written or
read.
TYPE
READ

WRITE

REFERENCE Vil - 83

THEN

PURPOSE A reserved word that governs the execution of
statements when an IF conditional test returns
TRUE
SYNTAX IF condition THEN
statement,

COMMENTS For a complete discussion of THEN as part of
an IF statement, see IF

SEE ALSO IF

" REFERENCE Vil -84

TO

PURPOSE A reserved word that indicates the upper
boundary of a FOR loop

SYNTAX FOR variable-identifier .= X TO Y DO
statement
COMMENTS Xis the low value and Y the high value.
SEE ALSO DOWNTO
FOR

REFERENCE Vil - 85

TRUE

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Indicates a BOOLEAN logical state
TRUE

BOOLEAN expressions yield either a TRUE or
a FALSE state. The identifier TRUE may be
used in expressions that evaluate that state.

For example, if the variable STATUS is defined
as a BOOLEAN variable, the following
expression evaluates the variable and takes
the appropriate action:

CASE Status OF
TRUE : X = 10;
FALSE : X =20

END;

If the BOOLEAN variable Status is TRUE, the
program sets the value of X to 10.

BOOLEAN
FALSE

'REFERENCE VIi - 86

TRUNC

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Converts a value to an Integer by truncating
any fractional part of the value

TRUNC(%)

TRUNC, a predefined function, drops any
decimal part of a value.

TRUNC(5.2) returns the value 5.
TRUNC(5.9) also retumns the value 5.

MAXINT
ROUND

REFERENCE Vil - 87

TYPE

PURPOSE
SYNTAX

COMMENTS

SEE ALSO

Indicates a user-defined data element

TYPE
lype-identifier = ARRAY
{lower-limit..upper
limiff OF data-type;
type-identifier = RECORD

TYPE indicates that you are defining a data
element that is not one of PASCAL's
predefined data types: CHAR, INTEGER,
REAL, or BOOLEAN.

Data types that the programmer defines are
called structured data types since they are
organized ta fit each particular situation.

A user-defined TYPE must be declared after
the list of constants but before the list of
variables. This is because the TYPE may
include constants, but it must then be
identified by a Variable identifier.

ARRAY

RECORD

VARIABLE

FILE

EFERENCE Vii - 88

TX

PURPOSE
SYNTAX
COMMENTS

SEE ALSO

Cancels the high resolution graphics mode
TX;

A nonstandard Pascal procedure. The
program must first have entered the high
resolution graphics mode by a HGr statement.
The procedure HIRES.| must also be

"included" in the program using the #i
command.

HGR

REFERENCE Vil - 89

UNPACK

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Copies components of a PACKED array
variable into an UNPACKed array variable

UNPACK(PackedArray,Index,
UnpackedArray)

Kyan Pascal automatically packs and unpacks
arrays as needed by the program.
Consequently, this command is usually not
needed.

To unpack a packed array, indicate the
Identifier of the PACKED array, the index value
of the Packed array where the unpacking
begins, and the identifier of the Unpacked
array.

PACK
PACKED

'REFERENCE Vii -90

UNTIL

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

Indicates the condition which ends a REPEAT
loop

REPEAT
statement,
UNTIL conditional-expression,;

The REPEAT loop continues to execute until
the condition defined by the predefined word
UNTIL becomes TRUE.

Note the difference between the REPEAT . .
UNTIL loop, which tests for the condition at the
end of the first and subsequent executions,
and the WHILE . . DO loop, which performs the
conditional test before it executes the loop.

REPEAT
WHILE

REFERENCE VII - 91

VAR

PURPOSE Indicates variables used in the program

SYNTAX VAR
identifier : data-type;

COMMENTS A Variable declaration identifies a name that will
represent a value. When declaring the
variable, you must indicate the type of data it
will represent. The Variable declaration is
punctuated with a semicolon(;).

A Variable may represent any type of data.

When using a Variable in a program, refer to it
by its name-identifier.

SEE ALSO CONST
TYPE

REFERENCE Vi - 92

WHILE

PURPOSE

SYNTAX

COMMENTS

SEE ALSO

A predefined statement that execules one or
more commands as long as the control
conditions remain TRUE

WHILE conditional-expression DO
BEGIN
statement,
Statement
END;

The WHILE loop evaluates the conditional
expression and executes the statement
following the word DO only if the conditional
expression is TRUE. If the conditional
expression is FALSE, the statement is
skipped.

Ordinarily, the WHILE statement executes only
the statement following the word DO. If more
than one action should be taken, the
statements must be enclosed in BEGIN/END
braces.

Unlike the REPEAT statement, the WHILE
statement tests the conditional expression
before it executes the commands controlled
by the loop.

DO

REPEAT

REFERENCE Vil - 93

WITH

PURPOSE
SYNTAX

COMMENTS

SEE ALSO

Accesses fields within a record

WITH (record-identifier) DO
statement referring to a field.

The record identifier is the name of the record
variable. The WITH statement declares the
record that will be used.

Statements that follow the word DO can refer
directly to fields within the record without the
usual Record.Field syntax. These statements
continue to refer to fields within the current
record until the WITH statement is ENDed.

Nested records, i.e. records that contain fields
which are themselves records, can be
accessed by identifying more than one record
variable in the WITH . . DO statement. If the
Record, Student, contains a field, Scores,
which is itself a record containing the field,
SAT, the following WITH statement allows
direct access to SAT:

WITH Student, Scores DO

Whiteln(SAT)

EN o

The record identifiers must be listed in the
order in which they are nested, from the largest
nest to the smallest.

If DO should control more than one statement,

the statements must be enclosed in
BEGIN/END braces.

DO

REFERENCE Vii - 94

"WRITE

PURPOSE
SYNTAX

COMMENTS

Directs data to a storage or display device

WRITE(file-identifier,
data-identifier);

The WRITE statement directs data to a device
indicated by the file identifier. The file identifier
is optional. If it is omitted, WRITE directs the
data to the screen by default. if an external
device is indicated by the file identifier, data is
directed to that device. For a detailed
discussion of writing to a TEXT file, see the
chapter on FILES in "Programming
Techniques.”

The data identifier may also be a literal series of
characters. If this is so, simply enclose the
items in single quotes or apostrophes. For
example, WRITE('Hello) prints Hello on the
monitor.

The WRITE statement does not append an
End Of Line (EOLN) marker to the data. This
means that if you WRITE data to the screen,
the cursor remains at the position immediately
following the data printed on the monitor.

The data identifier is a Variable that holds the
data which is being redirected.

REFERENCE VIl - 95

WRITE (cont.)

The following examples illustrate different uses
of the WRITE statement:

WRITE('Hello');
prints "Hello" on the screen
WRITE(NAME);

prints the characters represented by
the Variable "Name" on the screen

WRITE(DiskFile, Sentence);
writes the characters contained in the
Variable "Sentence"” to the disk file
"DiskFile."

REMEMBER: The WRITE statement does not
append an EOL marker.

SEE ALSO EOLN
WRITELN
FILE

SEEERENCE VII- 96

WRITELN

PURPOSE

SYNTAX
COMMENTS

SEE ALSO

Directs the output of data to a monitor or
external device and appends the End Of Line
marker

WRITELN(FileName,item);

The WRITELN statement writes datato a TEXT
file. If no file is specified, the detault is
OUTPUT. The item written may be a literal
string or any data represented by an identifier.

WRITELN inserts an End Of Line marker at the
end of the line that is written and advances the
file marker to the next position in the file.

The following examples illustrate some of the
uses of WRITELN.

WRITELN('Enter a value:');
Wirites the literal string Enter a
value: to the screen and advances
the cursor {o the next line.

WRITELN(Total);
Writes the value represented by the
variable Total to the screen and
advances the cursor to the next
line.

WRITELN(Chapter1, 'introduction’);
Wiites the literal string
Introduction to a text file named
Chapter1 and advances the file
pointer to the next line

WRITE READLN
READ FILE

REFERENCE Vil - 97

APPENDIX A

GUIDE TO ISO
STANDARD PASCAL

DATA TYPES

STRUCTURED:
POINTERS
SIMPLE:

Array, File, Set, Record

Real

Ordinal

..Enumerated

..Predefined (Boolean, Integer, Char)
..Subrange

STANDARD IDENTIFIERS

CONSTANTS:
TYPES:
VARIABLES:
FUNCTIONS:

PROCEDURES:

False, Maxint, True

Boolean, Char, Integer, Real, Text
Input, Output

Abs, ArcTan, Chr, Cos, Eof, Eoln, Exp,
Ln, Odd, Ord, Pred, Round, Sin, Sqr,
Sqrt, Suce, Trunc

Dispose, Get, New, Pack, Page, Put,

Read, Readin, Reset, Rewrite, Unpack,
Wirite, Writeln

Appendix A - 1

GUIDE TO ISO STANDARD PASCAL

TABLE OF SYMBOLS

SPECIAL SYMBOLS
+ - * /
< > r< >=

()
.

WORD SYMBOLS (RESERVED WORDS)

and end nif

amay file not

begin for of

case function or

const goto packed

div if procedure

do in : program

downto label record

else mod repeat
DIRECTIVE forward

set
then

type
until
var
while
with

Appendix A - 2

APPENDIX B

TECHNICAL
SPECIFICATIONS

RUNTIME MEMORY MAP

_SystemFiles are loaded at $2000 and relocated depending on the
setting of the HIRES graphics relocation utility, *_UsesHires" (on or off).
If the utility is active, the BIN image of the object program is loaded at
location $4000 allowing the heap to occupy from $800 to $2000.
Locations $2000 - $3FFF are thereby left clear for the HIRES routines.

Runtime Memory Map with " esHires" ACTIVE

0 - $ 7FF Apple system overhead
$ 800 — $1FFF System variable space
$2000 — $3FFF HiRES Graphics (page 1)
$4000 — $8FFF Program
$9000 — $BEFF _LIB (Kyan Runtime Library)
$BFO0 — $BFFF ProDOS primary access page
$C000 — $CFFF Soft switches/peripheral ROM
$D000 — $F7FF Z%%(I::soﬁ BASIC
$F800 — $FFFF System Monitor

Appendix B - 1

TECHNICAL SPECIFICATIONS

Runtime Memory Map with " UsesHires" INACTIVE

0 - $7FF Apple system overhead

$ 800 - _LoMem Program

_LoMem -~ $9000 System variable space

$9000 - $BEFF _LiB

$BFO0 - $BFFF ProDOS primary access page

$C000 -~ $CFFF Soft switches/peripheral ROM |
space

$D000 -~ S$F7FF Applesoft BASIC

$F800 ~ $FFFF System Monitor

TECHNICAL DATA

OPERATING SYSTEM: ProDOS

INTEGER RANGE: -32768 to +32767

REAL RANGE: -1.00E+99 to +1.00E+99

CHARACTERS: ASCIi character set with
corresponding ordinal values

SET: Maximum 256 members

POINTER: Represented by 16-bit integers

CUT BUFFER SIZE: 2K

BCD MATH PRECISION: 13 digits

MIN. RAM REQUIRED: 64 K

MAX IDENTIFIER LENGTH: 256 characters

Appendix B - 2

APPENDIX C

COMPILER ERROR
MESSAGES

NUMBER DESCRIPTION

emor in simple type
identifier expected
'Program’ expected
')’ expected

"' expected

illegal symbol

error in parameter list
‘of' expected

‘(" expected

10 error in type

11 T expected

12 T expected

13 ‘end’ expected

oo~NOTONbAbWNN =

14 "' expected
15 integer expected
16 '=' expected

17 'begin’ expected

18 error in declaration part
19 error in field-list

20 '! expected

21 " expected

50 error in constant

51 "=' expected

52 ‘then' expected

53 ‘until' expected

54 ‘do’ expected

55 'to'/'downto’ expected
56 if' expected

57 file' expected

Appendix C - 1

COMPILER ERROR MESSAGES

58
59

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120

121
122

123
124
125
126

127
128

129
130
131
132
133

error in factor
error in variable

identifier declared twice

low bound exceeds high bound

identifier is not of appropriate class
identifier not declared

sign not allowed

number expected

incompatible subrange types

file not allowed here

type must not be real

tagfield type must be scalar or subrange
incompatible with tagfield type

index type must not be real

index type must be scalar or subrange
base type must not be real

base type must be scalar or subrange
error in type of standard procedure parameter
unsatisfied forward reference

forward reference type identifier in
variable declaration

forward declared; repetition of parameter
list not allowed

function result type must be scalar,
subrange, or pointer

file value parameter not allowed

forward declared function; repetition of
result type not allowed

missing result type in function declaration
F-format for real only

error in type of standard function parameter
number of parameters does not agree with
declaration

illegal parameter substitution

result type of parameter function does not
agree with declaration

type conflict of operands

expression is not of set type

test on equality allowed only

strict inclusion not allowed

file comparison not allowed

Appendix C - 2

COMPILER ERROR MESSAGES

174

illegal type operands

type of operand must be Boolean

set element type must be scalar or subrange
set element types not compatible

type of variable is not array

index type is not compatible with declaration
type of variable is not record

type of variable must be file or pointer

illegal parameter substitution

illegal type of loop control variable

illegal type of expression

type conflict

assignment of files not allowed »
label type incompatible with selecting expression
subrange bounds must be scalar

index type must not be integer

assignment to standard function is not allowed
assignment to formal function is not allowed
no such field in this record

type eror in read

actual parameter must be a variable

control variable must not be declared on
intermediate level

multidefined case label

too many cases in case statement

missing corresponding variant declaration
real or string tagfields not allowed

previous declaration was not forward

again forward declared

parameter size must be constant

missing variant in declaration

substitution of standard proc/func not allowed
multidefined label

multideclared label

undelared label

undefined label

error in base set

value parameter expected

standard file was redeclared

undeclared external file

Fortan procedure or function expected
Pascal procedure or function expected

Appendix C -3

COMPILER ERROR MESSAGES

175
176
177
178
179

180
181

201
202
203
204
205
206

250
251
252
253
254
255

257
258
259
260

300
301
302
303
304

398
399

missing file *input” in program heading

missing file "output” in program heading
assignment to function identifier not allowed here
multidefined record variant

X-opt of actual proc/func does not match

formal declaration

control variable must not be formal

constant part of address out of range

error in real constant : digit expected

string constant must not exceed source line
integer constant exceeds range

8 or 9 in octal number

zero string not allowed

integer part of real constant exceeds range

too many nested scopes of identifiers

too many nested procedures and/or functions
too many forward references of procedure entries
procedure too long

too many long constants in this procedure

too many errors on this source line

too many external references

too many externals

too many local files

expression too complicated

oo many exit labels

division by zero

no case provided for this value

index expression out of bounds
value to be assigned is out of bounds
element expression out of range

implementation restriction
variable dimension arrays not implemented

Appendix C - 4

APPENDIX D

ProDOS (MLI) ERROR
MESSAGES

MBE

$00
$01
$04
$25
$27
$28
$2B
$2E
$40
$42
$43
$44
$45
$46
$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$50
$51
$52
$53
$55
$56
$57
$5A

DESCRIPTION _

No error

Bad system call number

Bad system call parameter count

ProDOS Interrupt table full

/O error

No device connected

Disk write protected

Disk switched

Invalid pathname

Max number of files open (Max = 8 files)
Invalid reference number

Directory not found

Volume not found

File not found

Duplicate filename

Volume full (No blocks free)

Volume directory full (Max = 51 entries)
Incompatible file format or a ProDOS directory
Unsupported storage type

End of file encountered. No data was read
Position out of range

File access error or a locked file

File is open (Multiple opens not allowed)
Directory structure is damaged

Not a ProDOS volume

Invalid system call parameter

Volume control block table full (Max = 8 volumes)
Bad buffer address (Already in use)
Duplicate volume

File structure damaged

Appendix D - 1

ProDOS ERROR MESSAGES

ProDOS File Types

NUMBER

$00
$04
$06
$0F
$CO - $EF
$FO
$F1-$F8
$F9
$FA
$FB
$FC
$FD
$FE
$FF

DESCRIPTION

Typeless file

ASCI! text file

General Binary file

Directory file

ProDOS reserved

ProDOS added command line
ProDOS user defined files 1 - 8
ProDOS reserved

Integer BASIC program file
Integer BASIC variable file
Applesoft program file
Applesoft variables file
Relocatable code file (EDASM)
ProDOS system file

Aopendix D - 2

APPENDIX E

ASSEMBLER ERROR
MESSAGES

NUMBER DESCRIPTION

Syntax Errors

1 Address Error

2 Cannot Include File

3 Format Error

4 Forward Reference in Expression

5 llegal Use of Conditional Assembly Directive before or

6 Misplaced Else Operator

7 Identifier Expected as Operand

8 Label Required

9 Multiply Defined Symbol

10 Nesting Error

11 Invalid Op-Code

12 Phase Error

13 Questionable Syntax

14 Undefined Symbol

15 lllegal Argument for Conditional Assembly

16 Symbol not in Macro Call Parameter List

17 Directive Requires "on" or "off"
Fatal Assembler Errors

20 Unknown Error

21 Symbol Table Overflow

22 Lost Label

23 End of File During Macro Definition

24 End of File During Conditional Assembly

Appendix E - 1

APPENDIX F

RUNTIME ERROR
MESSAGES

NUMBER DESCRIPTION

1 Case Index Error

2 Array Index Error

3 Input Error

4 ProDOS Error

5 Range Error

6 Arithmetic Overflow
7 End of File

Appendix F - 1

APPENDIX G

ASCIl CHARACTER SET

ASCIl Control Characters, High Bit Oft

CHAR
0 NUL
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 HT
10 LF
11 VT
12 FF
13 CR
14 SO
15 Sl
16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM
26 SuB
27 ESC
28 FS
29 GS
30 RS
31 us

MEANING WHAT TO TYPE
Null CNTL -@
Start of Heading CNTL -A
Start of text CNTL -B

End of text CNTL -C

End of transmission CNTL -D
Enquiry CNTL -E
Acknowledgement CNTL -F

Bell CNTL -G
Backspace CNTL -Hor<-
Horizontal Tab CNTL -l orTAB
Line Feed CNTL Jor}
Vertical Tab CNTL Korg
Form Feed CNTL -L
Carriage Return CNTL -Mor RETURN
Shift Out CNTL N

Shift In CNTL -O

Data Link Escape CNTL -P
Device Control 1 CNTL -Q
Device Control 2 CNTL -R
Device Control 3 CNTL -S
Device Control 4 CNTL -T

Neg. Acknowledge CNTL -Uor—>
Synchronization CNTL -V

End of Text Block CNTL W
Cancel CNTL X

End of Medium CNTL -Y
Substitute CNTL -2
Escape CNTL -[orESC
File Separator CNTL A
Group Separator CNTL]
Record Separator CNTL #

Unit Separator CNTL -

Appendix G- 1

ASCII CHARACTER SET

ASCIl Special Characters, High Bit Off

CHAR MEANING WHAT TO TYPE
32 SP Space SPACE BAR
33 ! Exclamation

34 " Quote Mark

35 # Pound

36 $ Dollar

37 % Percent

38 & Ampersand

39 ! Closing Quote

40 (Open Parenthesis
41) Close Parenthesis
42 * Asterisk

43 + Plus

44 , Comma

45 - Hyphen

46 . Period

47 / Slant

48 0 zero

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 : Colon

59 ; Semi-colon

60 <

61 = Equal

62 >

63 ?

Appendix G- 2

ASCII CHARACTER SET

ASCIl Upper Case Characters, High Bit Off
_# CHAR MEANING WHAT TQ TYPE

Opening Bracket
Reverse Slant
Closing Bracket
Caret

95 Underline

\'
©
>'_‘/"'“N-<><E<C—1C0I)D'UOZ§I_XL_IG)'TIITIOOCD>@

Appendix G - 3

ASCHl CHARACTER SET

ASCIl Lowercase Characters, High Bit Off

CHAR MEANING WHAT TO TYPE

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Opening Quote

Opening Brace
Vertical Line
Closing Brace
Overline (Tilde)
EL Delete/Rubout

Oli~——N<Xg<C™0W-"0TVODI—X—""TJTQ"0Q0OO0w

NOTE: The ASCI! character set repeats with numbers 128 through 255
for the case with the High Bit On.

Appendix G - 4

INDEX

A

ABS Vii-2
Actual Parameter IV-74
Addition Iv-27
Address IV-156 VI-3
AND Vii-4
ARCTAN VII-5
Argument \V-77
ARRAY V-85, VIii-6
..Copy IV-104
..Multidimensional 1V-98
..OF Records IV-118
ASCllcodes Appendix.- G
Assembler V-1
Assembler Directives V-4
Assembly Routine V-4, 20
Assignment operator IV-25
AutoBoot ih-22
B

BEGIN/JEND VII-9, 1V-14
Block Commands -6
Body IV-14
Boolean iv-49, VI-10
Bracket -8
Byte IV-12
C

C40 VI-25
C80 VI-25
CASE selector VII-11
CASE statement IV-62
CAT VI-13
CD VI-8
CFG VI-26
Character data type IV-40
..ARRAYS OF IV-41
..Strings IV-42

Chain n-18
Char vii-12, V-37
CHMOD VI-18
CHR IvV-46, VII-15
CMP Vi-20
Color n-17
Comment V-9
Compiler -1
Concat -14, VII-16
Conditional IV-26
Configuration 1-12, VI-26
Constant IV-15
CONST Vi-17, IV-14
COS Vil-18
CP VI-15
CcPV VI-19
Cursor control -5
Cut Bufter -6
D

Data types, Predefined
..ARRAY IV-40
..BOOLEAN IV-49
..CHAR IV-40
.INTEGER IV-31
..REAL IV-31
.VAR IV-16
Data types, User-defined
..Record IV-113
..Scalar IV-59
..String Iv-37
Date VI-23
Declaration iv-8,67,77,95
Decrement IV-34
Difference iV-130
Directory Control Vi-6
DISPOSE IV-166, VII-19
DIV IV-53, VII-20
Division IvV-27
DO IV-34, VII-21
DOWNTO Vil-22

INDEX - 1

INDEX

DRAW lil-16
E

Echo VI-33
EDITOR 12, I
Element

..OF ARRAY IV-96
..OF SET IV-127
ELSE ViI-23
END Vii-24
EOF IV-139, VII-25
EOLN iV-109, ViI-26
Ermror Messages Hi-35
..Compiler Appendix - C
..ProDOS Appendix - D
..Assembler Appendix - E
..Runtime Appendix - F
EXP VIi-27
F

False VIi-28
File IV-135
..defined VII-29
..management IV-146
..names V-3
..of records IV-142
..random access IV-148
..reading IV-138, IV-146
.text IV-152
..writing IV-136
Find Vi-21
FOR IvV-29, VII-30
Format VI-19
Formatting output VI-27
Formulas V-1
Forward reference IV-91
Functions IV-77, VI-31
G

Graphics
GET
Global
GOTO
GREP

H

Heap
Hierarchy
In KiX files
HGr
HIRES

Identifier
IF

conditions
IN
INCLUDE
Index HI-13,
INPUT
INTEGER
Intersection
INTRO
ISO PASCAL

J

Nl-14
IV-149, VII-33

iv-83
IvV-93, VII-35

VI-22

IV-162

VI-2
l-16, VII-36
li-16

IV-142
VIi-37
IV-26
IV-129, VII-38
[1R¢)
IV-100 VII-40
IV-16, Vil-41
IV-32 Vil-42
IV-130
Vi-26
i., Appendix - A

IV-14,

INDEX - 2

INDEX

K

KIX Commands VI-5
..Advanced Topics VI-38
..Command Menu VI-26
..File Structure VI-2
..Useful Commands VI-34
..Wildcards VI-29
L

Label V-14 VI-43
LENGTH m-12 Vi-44

LIBRARY (LIB) v, 19

Linked Lists IV-162
Linking Programs n-18
LINK iii
Literal iv-8
LN VI-45
Local V-17
..in Assembler V-14
.Variables IV-83
LS Vi-9
LPR Vi-13
M

MAXINT VIi-46, IV-29,162

Memory Map Appendix - B
Memory Usage IV-156, V-11

MENU VI-26
MKDIR VI-6
MOD IV-53, Vil-47
Multidimension Arrays 1V-98
Multiple Parameters IV-73
Multiplication v-27
MV Vi-16
N

Nests IV-28, 86

NEW IV-158, Vil-48
NIBBLE IV-12
NIL VII-50
Node IV-155
NOT VII-51
Numbers

.Integer V-32, VII-42
..Real iv-32, VII-68
(0]

Object Code VI-2
oDnD VII-62, 1V-81
OF VII-63
Operating System -3
Operator Iv-27
.. Arithmetic v-27
..Precedence IV-54
..Relational v-27
..Set IV-130
Options, Compiler -3
OR VIi-564
ORD IV-63, VII-55
OUTPUT III-7, IV-16, VI-11
..printer n-7, Iv-11,17
..screen IV-6
p

PACK VII-57
PACKED ViI-58
PAGE VII-58
Parameter IV-70
..Multiple IV-73
.Used in Arrays IV-105
.Usedin Assembler V-14
.Value Iv-72, V-14
..Variable Iv-72, V-18
Pascal i
Pathname I-5, VI-3
Peek V-24
Pointer {V-155 VII-59

INDEX-3

INDEX

Poke V-23
Precision iii
PRED IV-63, VII-60

Predefined Funcs. 1V-34, 80
Predefined Words V-7

PR.I -8, ivV-17
PRINT -7
Printer IV-11,17
Procedure IV-67,V-18, VII-61
ProDOS 1-3
PROGRAM Vil-64
Programs, Sample

..AddMatrix IV-103
..AddressBook IV-120
..AddStrings IV-105
..AlphaScreen IV-161
..Appointments IV-163
..Average IV-30
..Calc V-89
..CallMenu IV-69
..Compute 1V-92
..Construction IV-12
..DivLesn IV-50
..Ego V-4
..Elapsed IV-116
..Exchange V-84
..Finals IV-131
..FirstWord 1V-38
..FormalParameter IV-74
..Format V-6
..GetWord IV-110
..Gokxample IV-94
..HexToDec IV-56
..Locate IV-97
..Math IV-79
..Matrix IV-100
..ParamArray IvV-107
..RecDemo IV-144
..RecRead vV-147
..SeekDemo 1V-149
..SetDemo IV-128
..SocialSecurity v-22

..StoreData IV-140
.. TestGrades IV-132
..VariantRec IV-123
..WordProc IV-153
PUT IV-149, VIil-64
PWD Vi-6
Q

Quit Vi-26
R

Random Access Files 1V-148
Random Numbers i1l-24
READ IV-16, VII-65
READLN IV-16, VII-66
Real IV-32, VIl-68
Record IV-113, VII-69
..ARRAY OF IV-118
..Copy IV-116
..FILE OF IV-142
..Variant IV-121
Recursion V-111
Redirection Vi-12
Relational Operator v-27
REPEAT IvV-61, VII-71
Reserved word \v-7
RESET VI-149 VII-72
REWRITE IV-136,VII-74
RM VI-16
RMDIR VI-8
ROUND IvV-29, VII-75
Run Program -24
..Compiler -2
..Editor II-2
..Assembler V-2

INDEX - 4

INDEX

Unconditional Branch IV-93

S Underscore (R}
Union IV-130

Scalar IV-55,129 UNPACK Vil-90

Scientific Notation IV-32 UNTIL VII-91

Scope 1IV-83

Screen config. it-16 vV

SD VI-25

SDIFF VI-21 Value Parameters Iv-21,72

Seek IV-148 VAR IV-14, VII-92

Sequential File IV-148 Variable IV-16

Set IV-127, VII-76 ..Assigning v-24

SIN VII-77 ..Boolean IV-49

Source Code IvV-2 ..Declaring iV-26

SQR VII-78 ..Global IvV-83

SQRT VI-79 ..Local IvV-83

Stack V-9 ..Parameters IV-72, V-18

Standalone Disks Hi-22 ..Relative iv-87

String 110, 1V-96, VII-80 ..Scalar IV-59, IV-129

Subrange 1IV-60 Variant records Iv-121

Subscript IvV-96, IV-100

Substring lI1-13, VII-81 W

Subtraction Iv-27

succ IV-63, Vil-82 WHILE IV-45, VII-93

Syntax Errors -5 Wildcard Vi-29
WITH IV-115, VII-94

T WRITE IV-16, VII-95
WRITELN IvV-16, VII-97

Tab -8

TEXT VIi-83 X

Editor II-1
files IV-152 i -

THEN Vil-84 X Register V-5

TO VII-85

TRUE VII-86

TRUNC IV-29, VII-87

TYPE IvV-91, VII-88

Tx li-16, VIl-89

U

INDEX -5

Suggestion Box

We do our best to provide you with complete, bug-free software and

documentation. With products as complex as compilers and program-
ming utilities, this is difficult to do. i you find any bugs or areas where
the documentation is unclear, please let us know. We will do our best
to correct the problem in the next revision. We would also like to hear
from you if have any comments or suggestions regarding our product.

To help us better understand your comments please use the following
formin your cormespondence and mail it to: Kyan Software Inc.,
1850 Union Street #183, San Francisco, CA 94123.

Name

Address

City State ZIP

Telephone:

(day) (evening)

Kind of Problem Software Description
__Software Bug Product Name
___Documentation Error Version No.
__Suggestions Date Purchased
___ Other

Kyan Software Products You Use
__Kyan Pascal __Kyan Macro Assembler/Linker
___ Program. Utilities Toolki __ Advanced Graphics Toolkit
___MouseText Toolkit __ Other

Your Hardware Configuration
Type/Model of Computer
How many and what kind of disk drives

What is your screen capability: 40 Column ___80 Column
How much RAM? K (what kind of RAM Board?)
What kind of printer and interface card do you use?

What kind of modem?
Other information about your computer system:

What do you use this software for?
____Education (lama __ teacher ___student)
____Hobby
____Professional Software Development

____ Other

Problem Description (if appropriate, please include a disk or
program listing).

Suggestions

60401C

OWNER REGISTRATION

Thank you for purchasing this product from Kyan Software.. Please fill in
this Registration form and mail it to Kyan Software. As a registered

owner, you are entitled to receive technical support, product upgrades,
and complimentary copy of "Update Kyan®, the Kyan newsletter.

Name

Address _ :
City State____ ZIP_,
Telephone (day) (evening) '
Software Description ,
Product Name --Version No.
Software Dealer Purch. Date _
What Kyan Software products do you use? .

___Kyan Pascal __Kyan Macro Assembler .
__ System Utilities Toolkit ___Advanced Graphics Tookkit
___TurtleGraphics Toolkit ___ Other ‘
___MouseText Toolkit __ Other

Hardware Configuration?

Type/Modet of Computer

Disk.drive(sy ., _

How much RAM . K . (what kind of RAM Board _.)

What kind of printer and ifterface card'do you'use _

What.kind of modem ______
Other information or ‘actédsoties

‘}(EER 2 I T o PN PR A
How will y‘q;ﬁhflié:é this software?

___Education - (lama __ teacher __student} . ___ Hobby
___Software Developimient ___Other
How did.yoy hear about thi$ produet?:
___Magazjngiadvertisement ' ___ Aticle or Product Review
___ Frpma friend or User Group ____At’school "

___Software dealer ___Other

y . + “‘ ’ e YR WY s e s - " .
What computer m'a'éaz‘ll’les do you read on: a: regular basis?

Kyan Software Inc.
1850 Union Street #183
San Francisco, CA 94123

Toolkit |

SYSTEM UTILITIES

USERS MANUAL

KYAN SOFTWARE INC.
SAN FRANCISCO, CALIFORNIA

TOOLKIT |

SYSTEM UTILITIES

Requires

Kyan Pascal (Version 2.0)

and

an Apple Il with 64K of memory

Copyright 1986
Kyan Software Inc.
San Francisco, California

TABLE OF CONTENTS

SECTION
PREFACE
A. INTRODUCTION

Overview
How to Use the System Utilities
Demonstration Programs

B. ProDOS UTILITIES LIBRARY

Overview and Routine Summary
Using the ProDOS Utility Library
Declaring Global Types

Routine Descriptions

C. DEVICE DRIVER LIBRARY

Overview and Rouline Summary
Using the Device Driver Library
Routine Descriptions

D. SCREEN MANAGEMENT LIBRARY

Overview and Rouline Summary
Using the Screen Management Library
Routine Descriptions

E. OTHER SYSTEM UTILITIES

Overview

Random Number Routines
Conversion Routines

Line Parse Routine
Sort/Merge Routine

F. APPENDIX (Disk Directory)

-1

1-12
1-14

I-25
|-26
1-27

1-33
1-34
1-35

SYSTEM UTILITIES TOOLKIT 1-1

PREFACE

Notice

Kyan Software reserves the right to make improvements to the
products described in this manual at any time and without notice.
Kyan Software cannot guarantee that you will receive notice of such
revisions, even if you are a registered owner. You should periodically
check with Kyan Software or your authorized Kyan Software dealer.

Although we have thoroughly tested the software and reviewed the
documentation, Kyan Software makes no warranty, either express or
implied, with respect to the software described in this manual, its
quality, performance, merchantability, or fitness for any particular
purpose. This software is licensed "as is".

in no event will Kyan Software be liable for direct, indirect, incidental or
consequential damages resulting from any defect in the software or
documentation even if it has been advised of the possibility of such
damages.

Some states do not allow the exclusion or limitation of implied
warranties or liabilities or consequential damages, so the above
limitation or exclusion may not apply to you.

Copyright 1986 by Kyan Software, Inc.
1850 Union Street #183
San Francisco, CA 94123
(415) 626-2080

Kyan Pascal is a trademark of Kyan Software Inc. The word Apple and
ProDOS are registered trademarks of Apple Computer Inc. -

SYSTEM UTILITIES TOOLKIT {-3

PREFACE

Use of Routines in this Toolkit

Kyan Software hereby grants you a non-exclusive license to merge or
use the routines in this Toolkit in conjunction with your own programs
for either private or commercial purposes.

Copyright

This users manual and the computer software (programs) described in
it are copyrighted by Kyan Software Inc. with all rights reserved.
Under the copyright laws, neither this manual nor the programs may
be copied, in whole or part, without the written consent of Kyan
Software Inc. The only legal copies are those required in the normal
use of the software or as backup copies. This exception does not
allow copies to be made for others, whether or not sold. Under the
law, copying includes translations into another language or format.

This restriction on copies does not apply to copies of individual
routines copied and distributed as an integral part of programs
developed by the purchaser of this Toolkit.

Backup Copies

We strongly recommend that you make and use backup copies of the
Toolkit diskette. Keep your original Kyan diskettes in a safe location in
case something happens to your copies. (Remember Murphy is
alive and well, and he loves to mess with computers!)

Copy Protection

Kyan Software products are not copy-protected. As a result, you are
able to make backup copies and load your software onto a hard disk or
into a RAM expansion card. We trust you. Please do not violate our
trust by making or distributing illegal copies.

I-4 SYSTEM UTILITIES TOOLKIT

PREFACE

Limited Warranty

Kyan Software warrants the diskette(s) on which the Kyan software is
furnished to be free from defects in materials and workmanship under
normal use for a period of ninety (90) days from the date of delivery to
you as evidenced by your proof of purchase.

Disclaimer of Warranty -- Kyan Software Inc.

Except for the limited warranty described in the preceding paragraph,
Kyan Software makes no warranties, either express or implied, with
respect to the software, its quality, performance, merchantability or
fitness for any particular purpose. This software is licensed "as is".
The entire risk as to its quality and performance is with the Buyer.
Should the software prove defective following its purchase, the buyer
(and not Kyan Software, its distributors, or its retailers) assumes the
entire cost of all necessary servicing, repair, or comection and any
incidental, or consequential damages.

In no event, will Kyan Software be liable for direct, or indirect,
incidental, or consequential damages resulting from any defect in the
software even if it has been advised of the possibility of such
damages. The sole obligation of Kyan Software Inc. shall be to make
available for purchase, modifications or updates made by Kyan
Software to the software which are published within one year from
date of purchase, provided the customer has returned the registration
card delivered with the software.

Some states do not allow the exclusion or limitation of implied
warranties or liabilities for incidental or consequential damages, so the
above limitations or exclusions may not apply to you.

I any provisions or portions of this Agreement shall be held by a court
of competent jurisdiction to be contrary to law, the remaining
provisions of this Agreement shall remain in full force and effect. The
validity, construction and performance of this Agreement shall be
governed by the substantive law of the State of California.

This Agreement constitutes the entire agreement between the
parties concerning the subject matter hereof.

SYSTEM UTILITIES TOOLKIT I-5

PREFACE

Technical Support

Kyan Software has a technical support staff ready to assist you with
any problems you might encounter. If you have a problem, we
request that you first consult this users manual.

If you have a problem which is not covered in the manual, our support
staff is ready to help. If the problem is a program which won't compile
or run, we can best help if you send us a description of the problem
and a listing of your program (better yet, send us a disk with the listing
onit). We will do our best to get back to you with an answer as quickly
as possible.

If you question can be answered on the phone, then give us a call.
Our technical staff is available to assist on Monday through Friday
between the hours of 9 AM and 5 PM, West Coast Time. You may
reach them by calling:

Technical Support: (415) 626-2080

Suggestion Box

Kyan Software likes to hear from you. Please write if you have
sugges-tions, comments and, yes, even criticisms of our products.
We do listen. Itis your suggestions and comments that frequently
lead to new products and/or product modifications.

We encourage you to write. To make it easier, we have included a
form in the back of this manual. This form makes it easier for you to
write and easier for us to understand and respond to your comments.
Please let us hear from you.

Mailing Address: Kyan Software Inc.
1850 Union Street #183
San Francisco, CA 94123

I-6 SYSTEM UTILITIES TOOLKIT

A. Introduction

Thank you for purchasing this System Utilities Toolkit. It is designed
for use with Kyan Pascal (Version 2.0 or later) and an Apple // with at
least 64K of memory (RAM).

Overview

The Toolkit contains many useful and powerful routines which can be
merged directly into your Kyan Pascal programs. These routines are
grouped into four libraries or directories.

l. _ProD tility Librar

This library contains routines which provide support for various
ProDOS functions and procedures from within Pascal programs.

o Delete o Rename o Copy o SetPrefix
o Append o Lock o Unlock o MakeDir

o RemDir o Find o ScanFile o FileType
o GetDir o GetPrefix o Format o GetTime
o GetDate o FindClock o SetDate o PrtMLlerror
o BSave o BlLoad o SetTime o GetTimeM
o PrintFile

ll. Device Driver Library

This library contains functions and procedures which establish
communication between your application programs and an external
device (i.e., mouse, joystick or trackball).

o FindMouse o InitMouse o MouseClick o MouseHeld
o MouseMoved o MouseX o MouseY o ZerMouse
o SetMouseXY o SetXBounds o SetYBounds o HomeMouse
o EndMouse o PriMouseChar o Button0 o Buttont

o JoyStX o JoyStY

SYSTEM UTILITIES TOOLKIT |- 7

INTRODUCTION

lll. _Screen Management Library

This library contains routines used to control screen functions.

o CLS o GoToXY o TAB o Inverse

o Normal o ScrollUp o ScrollDown o ClrLine

o CWEOLN o CWEOP o Col80 o CursorX

o CursorY o GetChar o ScrnTop o ScrnBottom
o ScmFull o IDMachine o ON40 o ON8o

v t tem Utiliti

o Random Number Routines
-- Seed ("seed" the random number generator routine)
-- Rnd (return a random number between 0 and 1)
-- Random (return a random number in range [min .. max])

o Conversion Routines

-- Integer to String -- Real Number to String
-- String to Real Number -- String to Integer

o Line Parsing Routine

o Sort/Merge Routine

- 8 SYSTEM UTILITIES TOOLKIT

INTRODUCTION

How to Use the System Utilities

The routines in each Library are text files and are structured to be
used as "include” files in your Pascal programs. To use them:

1. Copy the desired Toolkit routine(s) into your current
working directory.

2. Declare the "included” file(s) in the declarations
portion of your program.

3. Call the routine(s) as required in the body of your program.

Some libraries require global types to be separately declared. The
steps for declaring these global types are described later in this
Manual.

While most of the Toolkit routines are independent of all others, some
routines incorporate others in the body of their programs. In these
circumstances, it is necessary to include both Toolkit routines in your
Pascal program. If a routine is dependent on some other routine, the
dependency is noted in the application notes for the routine.

Itis a good idea to review the section in Chapter Il of your Kyan Pascal
manual which describes the use of “include” files in your Pascal
programs. You should also look at Chapter V which describes
assembly language programming and Appendices C-F which list the
meaning of MLI and other error messages.

You are encouraged to examine the source code of the Toolkit
routines. To do so, simply load the routine's include file using the
Kyan Text Editor. The source files are fully commented, and so you
should be able to easily follow the logic and flow of the program. You
can also modify any of the routines, if desired, and customize them for
your particular application.

The Appendix illustrates the directory and file organization of the
System Ulilities Toolkit disk. Always be sure to specify the complete
pathname of the include file when you are copying routines into your
working directory or running the demonstration programs. Also, when
running the demo programs, be sure there is a copy of the Kyan
Pascal Runtime Library (LIB) in the working directory.

SYSTEM UTILITIES TOOLKIT 1- 9

INTRODUCTION

Demonstration Programs

The System Utilities Toolkit contains a number of demonstration
programs which illustrate the use of Toolkit routines. Most of these
programs are included in both source and object code formats.

TmE

DESCRIPTION

CATALOG.P

MOUSE.DEMO.P

RANDOM.DEMO.P

ESORT.DEMO.P
MERGE.DEMO.P
MOUSETEXT.DEMO

TURTLE.DEMO

This program will print a short catalog of the
directory you indicate. It will list each file and
its type and size (in blocks). This program
demonstrates the ProDOS utilities.

Uses the Mouse routines in conjunction with
a simple menu application interfaced to the
mouse. This program demonstrates Device
utilities.

Play a simple random number game. This
program demonstrates seeding of the
random number generator.
Demonstrates the Sort routine.
Demonstrates the Merge routine.

(Object code only). Displays the procedure
and complete table of mouse text characters.

(Object code only). lllustrates the power of
Kyan's TurtleGraphics Toolkit.

I- 10 SYSTEM UTILITIES TOOLKIT

B. ProDOS Utility Library

Overview

The ProDOS Ultility Library contains 26 different routines. They
include a mix of functions and procedures which can be incorporated
into your Pascal programs. Each ProDOS utility routine is described
on following pages.

The ProDOS routines included in this Library are:

Append Bload
BSave Copy
Delete Filesize
Filetype Find
FindClock Format
GetClock GetDate
GetDir GetPrefix
GetTime Lock
MakeDir PrintFile
PrtMLlerror RembDir
Rename ScanFile
SetClock SetDate
SetPrefix SetTime
Unlock

The ProDQOS routines are listed in alphabetical order.

SYSTEM UTILITIES TOOLKIT 1- 11

ProDOS UTILITY L IBRARY

Using the ProDOS Utility Library

To use the ProDOS Ultility routines, you must first declare a set of
global types and then “include” the desired routine after the variable
and type declarations in your Pascal program. (Please refer to
Chapter Il of the Kyan Pascal User Manual for more information about
the use of Include files in Pascal programs.}) Once a routine is
included, it can be called as often as needed in your program.

Declaring Global Types

You can declare the global variables in either of two ways. First, you
can simply type the following global declarations into your Pascal
program:

Type
FileString = ARRAY [1..16] of CHAR;
PathString = ARRAY [1..65] of CHAR;
FilePointer = AFileRecord;
FileRecord = RECORD
Filename : FileString;
NextFile : FilePointer
END:

Alternately, you can "include" the file on the program disk called
PRODOS.TYPES.I in your Pascal program using the following
format:

Type
#i PRODOS.TYPES.I

Both methods acheive the objective of declaring the global types
used in the ProDOS Utility Library routines.

i- 12 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Notes

1. Don't forget to place a copy of all the files "included” in your Pascal
program in the same working directory as the main program. If you
forget, the compiler will not be able to find the file and a "File Not
Found" compiler error will occur.

2. There are no global types to be declared with Device Driver
routines.

3. The Utility program disk contains a set of sample programs. The
program file CATALOG.P demonstrates the ProDOS utilities.

4. All of the ProDOS Ultility Library routines are similar in that: (1) each
ProDOS Function returns the MLI error code of its operation; and,
(2) all pathnames passed must be padded with spaces to the right.

SYSTEM UTILITIES TOOLKIT 1- 13

ProDOS UTILITY LIBRARY

Command Name: Append

Syntax: FUNCTION APPEND(VAR sourcepath, addpath :
PathString) : INTEGER;

Description: Append the contents of "sourcepath” to "addpath”.
Type checks are not made; the user must do this first using the
FILETYPE function included in this toolkit. A 512-byte local buffer is
used for the data transfer area.

ARNRAARARIAARNAANAR AR A AR A AR AR AR RN

Command Name: BinaryLoad

Syntax: FUNCTION BLOAD (VAR pathname : PathString;
len, dest : INTEGER) : INTEGER,;

Description: Load the first "len” bytes of a BINary image named
"pathname" starting at "dest". If "len" is zero, the entire file is loaded.
For Example: To load a hi-resolution graphics image into page 1 of
hi-res memory, the command BLOAD(name, 8192, 8192) would be
used since the image length is 8192 bytes long ('len’) and hi-res page
1" starts at memory location 8192 ($2000) (‘dest)). If the image had
been saved with a length of 8192 previously, the command
BLOAD(name,0,8192) would perform the same opereation since a
lentgth specification of zero loads the entire binary file into memory.

AARAARANRRARARAERAARRANAR A AN N AN AR AR

Command Name: BinarySave

Syntax: FUNCTION BSAVE (VAR pathname : PathString;
len, dest : INTEGER) : INTEGER;

Description: Save a BINary image named "pathname” starting at
"dest" of “len" bytes in length. For example: To save a hi-
resolution graphics image stored in hi-res page 1, the command
BSAVE(name, 8192, 8192) would store a binary image of the first
8192 bytes it found (len of 8192) starting at location 8192 ($2000)
(start) into file 'name".

I- 14 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: Copy

Syntax: FUNCTION COPY(VAR sourcepath, destpath : PathString):
INTEGER,;

Description: Copy the file designated by "sourcepath” to the file
designeated by "destpath”. The destination filename already exists, it
is destroyed before the copy begins. COPY uses a 512-byte buffer in
which to perform the data transfer. The volumes involved in the copy

function must both be on-line at the time of the COPY. COPY will not
ask for volumes to be inserted and removed.

AARRRANIAARAARRAR RN AAR AN AR A ARAANR

Command Name: Delete

Syntax: FUNCTION DELETE(VAR pathname:PathString):
INTEGER;

Description: Delete the file designated in "pathname”. Error
codes are returned as Integers

RAAARRRAARARARANRARARA A AN R AN AN R AR

Command Name: FileSize

Syntax: FUNCTION FILESIZE (VAR pathname : PathString;
VAR fsize : INTEGER) : INTEGER,;

Description: Set FSIZE to the number of disk blocks occupiedby
"pathname” (i.e. return size of file in blocks).

SYSTEM UTILITIES TOOLKIT |- 15

ProDOS UTILITY L IBRARY

Command Name: FileType

Syntax: FUNCTION FILETYPE (VAR pathname : PathString;
VAR ftype : INTEGER) : INTEGER,;

Description: Set FTYPE to the file type of "pathname" (i.e. return
type of file).

ARRRARARRARRARRAA RN A AAAN R R AN R ANA

Command Name: Find

Syntax: FUNCTION FIND (VAR filename : PathString;
VAR found : BOOLEAN) : INTEGER,;

Description: Returns "found" TRUE if the file name passed is

located in the system prefix (Working Directory). Only the Working
Directory is searched.

AR ANRRARAR R AR AR RN AANNRA N AR KA NN AAA

Command Name: FindClock
Syntax: FUNCTION FINDCLOCK : INTEGER;

Description: Returns the slot number of a ThunderClock or
compatible Apple Il clock card. If there is no compatible clock in the
system, the number returned is zero. A ThunderClock is recognized
by the following identification bytes:

LOCATION VALUE
Cx00 8

Cx01 $27
Cx02 $28

where "X" is the slot number of the card.

- 16 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: Format

Syntax: FUNCTION FORMAT (slot, drive : INTEGER; volname :
FileString; VAR fmterror : INTEGER) : INTEGER;

Description: Format the volume in (slot#, drive#) and name the
new volume "volname”. If a format error occurs, an ML error code or
one of the following code numbers (fmterror) will be returned

$27 - Disk access error
$33 - Drive too slow
$34 - Drive too fast

If an error occurs during the writing of a boot block or construction of
the Volume Bit Map, it is returned as the function value. The volume
name specified must conform to pathname guidelines and begin with
a '/, or an "INVALID PATHNAME" will be returned as the function
value.

Due to the size of the FORMAT routine, it must be loaded from disk
each time it is used. A file named FORMAT.OBJ is included in the
ProDOS utilities directory on your diskette. This file must be located
in the Working Directory when the FORMAT routine is called.

FORMAT.OBJ is BLOADed into memory at location $2000 and
requires the use of HiRes graphics page 1. For this reason, any
program using the FORMAT function must begin with the following
code:

#A
_UsesHires
#

The "_UsesHires" declaration tells the compiler not to allocate any
memory between locations $2000 and $3FFF to any part of the
Pascal program or runtime environment. (Please refer to your Kyan
Pascal manual for more information).

Declaring a Pascal program to be a "_SystemFile" does not effect the
FORMAT routine.

SYSTEMUTILITIES TOOLKIT |- 17

ProDOS UTILITY L IBRARY

Command Name: GetClock

Syntax: PROCEDURE GETCLOCK (VAR mon, day, yr, hr, min,
weekday, sec, millisec: INTEGER);

Description: Returns readings from Thunderclock. If no clock is
present, the values returned are undefined. The FINDCLOCK
function must be called previous to this procedure.

AARRA AR RN AR R I AR AR A NN R R AR AR AR AR RN

Command Name: GetDate

Syntax: PROCEDURE GETDATE (VAR day, month, year
1 INTEGERY);

Description: Returns the day (0..31), month (0..12) and year
(00..99) as integers. (NOTE: The function FindClock must always
be called before a GetDate or SetDate procedure is used. Without
this call, these routines will not know there is a clock card in the

system.)

ARRANAARARAAARARARRANRRR AR AN RA R AN

Command Name: GetDirectory

Syntax: FUNCTION GETDIR (VAR dirname : PathString;
VAR ListPtr : FilePtr) : INTEGER;

Description: Returns a linked list of filenames in "dirname”. The list
is terminated by a NIL. If the directory is located but empty, LISTPTR
returns pointing at NIL. If the MLI return code is non-zero, LISTPTR
will be undefined.

- 18 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: GetPrefix

Syntax: PROCEDURE GETPREFIX (VAR prefix : PathString) ;
Description: Returns the current system prefix (Working
Directory). "Prefix” returns with the first 64 characters the system

prefix; the remainder is buffered by spaces. If the system prefix is null,
the returned array contains only blanks.

EE 22222223 R 2222222212222 222223

Command Name: GetTime
Syntax: PROCEDURE GETTIME (VAR hour, minute: INTEGER);

Description: Returns the system time in hour/minute military format

AARRAAARARRARNRRARARRARANAARANARAAAN

Command Name: Lock

Syntax: FUNCTION LOCK (VAR pathname : PathString) :
INTEGER,;

Description: Deny Write, Delete, and Rename access to the file
designated in the "pathname”.

SYSTEM UTILITIES TOOLKIT |- 19

ProDOS UTILITY LIBRARY

Command Name: MakeDirectory

Syntax: FUNCTION MAKEDIR (VAR dirname : PathString) :
INTEGER;

Description: Create a directory named "dirname”. The directory is
created as a linked subdirectory type.

RAARARRRARRARANAN NN R R RN RANANN RN AR

Command Name: PrintFile

Syntax: PROCEDURE PRINTFILE (pathname : PathString;
Slot, LeftMargin, RightMargin, TopMargin, BottomMargin, CPI;
INTEGER; header : FileString) : INTEGER;

Description: Print the text file designated by “pathname” to the
printer in “slot" using margins listed. Header is the printer
conditioning control codes. If an “include” file is encountered in the
text file, an attempt is made to find and print the included file. If it fails,
it is ignored and an MLI code is returned which corresponds to an
error caused by the pathname specified and NOT the include files.
The printer must be on-line and at top of form when this procedure is
called.

AARRRRANRARARR RN AN AR N AAARNAAAAANR

Command Name: PrintMLlerror
Syntax: PROCEDURE PRTMLIERROR (errorcode : INTEGER);

Description: Print the MLI error code passed at current cursor
position. Unknown error codes are printed as "PRODOS ERROR
$xx" where xx is the hexidecimal error code. The error text is printed
from the current position of the cursor and NO carriage return is
generated by the output routine.

I- 20 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY LIBRARY

Command Name: RemoveDirectory

Syntax: FUNCTION REMDIR (VAR dirname : PathString) :
INTEGER;

Description: DELETE the directory "dirname”, first checking to
make sure that "dirname"” is an empty directory. If "dirname" is not
empty, a "File Access Error” will be returned.

ARRAARRRAA AR ARAARAAN RN RARAAR AR R RS

Command Name: Rename

Syntax: FUNCTION RENAME (VAR oldpath, newpath : PathString) :
INTEGER,;

Description: Rename the file defined by "oldpath” with the name
defined by "newpath”. The files must be in the same directory for the
rename to succeed.

RANAARERARARARRAARAARAARAAAARANAAN

Command Name: ScanfFile

Syntax: FUNCTION SCANFILE (VAR pathname, string : PathString;
VAR position : INTEGER) : INTEGER,;

Description: Scan the TEXT file designated in "pathname” for the
string designated in "string". If the string is found, "position” returns
the byte number of the file position of the first character in the string
which matchs. If no match is found, "position" returns a value of-1.
The SCANFILE search is NOT case sensitive. This command is useful
for searching identification fields stored in text files (e.g., high score
files).

SYSTEM UTILITIES TOOLKIT |- 21

ProDOS UTILITY LIBRARY

Command Name: SetClock

Syntax: FUNCTION SETCLOCK(Month, Day, Year, Hours, Minutes,
Dayofweek: INTEGER):INTEGER;

Description: Set the ThunderClock peripheral card to the values
passed. The ThunderClock or compatible card must be write enabled
for the setting to succeed. The function values returned are:

Code Ermor Description

0 No error

1 Month not in 0..59

2 Day not in range according to month
3 Year not 86..99

4 Hour4 not in range 0..59

If an error occurs no time change takes place. The FINDCLOCK
function must be called previous to this function.

ARG ERARRRN A AR RRANAR AR AN RN AN R AN

Command Name: SetDate

Syntax: FUNCTION SETDATE (day, month, year:
INTEGER): INTEGER;

Description: Set the system date to the value specified by the
user. Error codes may be returned which correspond to an out-of-
bounds value:

Error Description

No error

Month is not between 1 and 12

Day is out of range (according to month
passed)

Year is not between 86 and 99

w N—*OE

If an error occurs, no date change takes place. (NOTE: The function
FindClock must always be called before either the SetDate or GetDate
procedure is used. Without this call, the these routines will not know
there is a clock card in the system.)

|- 22 SYSTEM UTILITIES TOOLKIT

ProDOS UTILITY L IBRARY

Command Name: SetPrefix

Syntax: FUNCTION SETPREFIX (VAR newprefix : PathString) :
INTEGER,;

Description: Set the system prefix (or Working Directory) to the

pathname specified. If the pathname is all blanks, the system
prefix is set to the root volume (nuli)

AARRRAANAERAR R RS A AARRAAAAAAAR RN

Command Name: SetTime

Syntax: FUNCTION SETTIME (hours, minutes : INTEGER) :
INTEGER,;

Description: Set the system time to the values passed. If an error
occurs, the function values returned are:

Code EmorDescripion
0 No error

1 Hour is not in range 0..23

2 Minute is not in range 0..59

It an error occurs, no time change takes place.

AARRRARRARARARARAAANARARRA AR ANAAAS

Command Name: Unlock

Syntax: FUNCTION UNLOCK(VAR pathname : PathString) :
INTEGER,;

Description: Reverse the effects of the LOCK function.

SYSTEM UTILITIES TOOLKIT - 23

C. Device Driver Library

Overview

The routines in the Device Driver Library allow you to link external
devices to your Pascal programs. The routines are intended for use
with a mouse, trackball (which behave exactly like a mouse), or
joystick.

If you are planning a major project using mouse routines, you should
look at Kyan's MouseText Toolkit. The routines in this System
Utility Toolkit are quite primitive in comparison. The MouseText
Toolkit provides all of the macros needed for windows, pull-down
menus, option selection via mouse, and icon manipulation.

A mouse interface works best when it is “interrupt driven”, that is,
when the programmer sets up a series of routines which the mouse
firmware (i.e., the ROM's on the Mouse card) calls as events occur.
The routines in this Toolkit are not interrupt driven. Instead, the
program must continuously poll the device status to determine when
a condition changes. This method is less efficient than the interrupt
technique but is also much easier to use in small Pascal programs.
You can look at the Mouse Demo program (described on the next
page) to see a practical method for interfacing the mouse with your
program.

For a complete discussion of mouse firmware and the interface
between mouse firmware and your Apple I, please refer to the
documentation which you received with your mouse.

The routines in the Device Driver Library are:

Button0 Button1 EndMouse
FindMouse HomeMouse InitMouse
JoyStX JoySiRy MouseClick
MouseHeld MouseMoved MouseX
MouseY PrtMouseChar SetMouseXY
SetXBounds SetYBounds ZerMouse

2o M eIt

SYSTEM UTILITIES TOOLKIT 1- 25

DEVICE DRIVER L IBRARY

Using the Device Drive Library

To use the Device Driver routines, you must first “include” the desired
routine after the variable and type declarations in your Pascal program.
(Please refer to Chapter Il of the Kyan Pascal User Manual for more
information about the use of Include files in Pascal programs.) Once
the routine is included, you can call it as often as needed in your
program.

Notes

1. Don't forget to place a copy of all the files “included"” in your Pascal
program in the same working directory as the main program. If you
forget, the compiler will not be able to find the file and a "File Not
Found" compiler error will occur.

2. There are no global types to be declared with Device Driver
routines.

3. The program disk contains a set of sample programs. The program
file Mouse.Demo.P demonstrates the use of mouse routines in
conjunction with TurtleGraphics. You can use the Kyan Pascal editor
to examine the source code and to see how the device routines can
be utilized in your own programs.

4. The use of any mouse routine requires FUNCTION FINDMOUSE to
be in the host program. Also, PROCEDURE INITMOUSE must be
loaded and called before any other mouse routines are used.

I- 26 SYSTEM UTILITIES TOOLKIT

DEVICE DRIVER LIBRARY

Command Name: Button0
Syntax: FUNCTION BUTTONO : BOOLEAN,;

Description: This function returns the value TRUE if button 0 or
the Open-Apple Key is pressed.

ARARRRARARRAARNARANARANARARRR RS R RAR SR AN

Command Name: Button1
Syntax: FUNCTION BUTTON1 : BOOLEAN;

Description: This function returns the value TRUE if button 1 or
the Closed-Apple Key is pressed.

RRRARRARARARNARAAA AR ARAAARA A RRN R AAAN

Command Name: EndMouse
Syntax: PROCEDURE ENDMOUSE;

Description: This procedure disables the mouse system
interrupts.

SYSTEM UTILITIES TOOLKIT - 27

DEVICE DRIVER LIBRARY

Command Name: FindMouse

Syntax: FUNCTION FINDMOUSE : INTEGER,;

Description: This function returns the slot number of the mouse
card. If none is present, FINDMOUSE will return a zero and all other
calls to mouse routines will be ignored. The FINDMOUSE function

must be called in every program using mouse routines (along with the
INITMOUSE procedure).

RARRRANRANNARRANN AR AR AR AR AR AANA AR AL

Command Name: HomeMouse
Syntax: PROCEDURE HOMEMOUSE;
Description: This procedure moves the mouse X,Y coordinates to

their lowest boundaries as defined by the SetXBounds and
SetYBounds routines.

AARRAARNRANRARRANARRARARARRAN AN AR R AN

Command Name: [InitializeMouse
Syntax: PROCEDURE INITMOUSE;

Description: This procedure prepares the mouse firmware for use.
It sets the X, Y lower and upper bounds to 0 and 1023 and disables
the mouse firmware interrupts. INITMOUSE must be called before any
other mouse routines are used (the FINDMOUSE procedure must
also be called as part of initializing the mouse routines).

- 28 SYSTEM UTILITIES TOOLKIT

DEVICE DRIVER LIBRARY

Command Name: JoyStickX
Syntax: FUNCTION JOYSTX : INTEGER;

Description: This function returns a value between 0 and 255 for
the joystick X coordinate (paddie 0).

AARARRARRARRA AR R ARRARRAARANA AR AARANAR

Command Name: JoyStickY
Syntax: FUNCTION JOYSTY : INTEGER;

Description: This function returns a value between 0 and 255 for
the joystick Y coordinate (paddle 1).

ARNRAANARARARRARARACRAR A NS N AARAAR AN RS

Command Name: MouseClick
Syntax: FUNCTION MOUSECLICK : BOOLEAN;

Description: This function returns the value TRUE is the mouse
button is down.

SYSTEM UTILITIES TOOLKIT 1- 29

DEVICE DRIVER L IBRARY

Command Name: MouseHeld
Syntax: FUNCTION MOUSEHELD: BOOLEAN;

Description: This function returns the value TRUE if the mouse
button has been down since the last reading of its status.

WANRRA AR AR RNAN AN AN AN AN R AR RRARANR RN A AL

Command Name: MouseMoved

Syntax: FUNCTION MOUSEMOVED : BOOLEAN;

Description: This function returns the value TRUE if the mouse's
position has changed since the last reading of its status.

ARARRARNARRNNARARARANAARAAAARA A AN RR RN AN

Command Name: MouseX
Syntax: FUNCTION MOUSEX : INTEGER;

Description: This function returns the value of the mouse's X
coordinate (0 thru 1023).

I- 30 SYSTEM UTILITIES TOOLKIT

DEVICE DRIVER LIBRARY

Command Name: MouseY
Syntax: FUNCTION MOUSEY : INTEGER,;

Description: This function returns the value of the mouse's Y
coordinate (0 thru 1023).

ARERRAAARAAARARRARARAARRAARAR A AN AR AR

Command Name: PrintMouseCharacter

Syntax: PROCEDURE PRTMOUSECHAR (ch:CHAR);

Description: This procedure prints the character passed as a
mouse character at the current cursor position.

AERAARRAAARRR AR AARARARARRRARAAARNRANS

Command Name: SetMouseXY
Syntax: PROCEDURE SETMOUSEXY (x,y:INTEGER);

Description: This procedure sets the mouse firmware coordinates
to the values x and y.

SYSTEM UTILITIES TOOLKIT |- 31

DEVICE DRIVER LIBRARY

Command Name: SetXBounds
Syntax: PROCEDURE SETXBOUNDS (xmin, xmax : INTEGER);

Description: This procedure sets the upper and lower bounds for
the X coordinate.

WAANRAANR AR A AR R AR AR AR R AR ARk d

Command Name: SetYBounds
Syntax: PROCEDURE SETYBOUNDS (ymin, ymax : INTEGER);

Description: This procedure sets the upper and lower bounds for
the Y coordinate.

RANAARNARRRAAARNRRAARR R AR R AR ARA RN AN AN AL

Command Name: ZeroMouse
Syntax: PROCEDURE ZERMOUSE;

Description: This procedure zeroes the X,Y mouse coordinates on
firmware.

- 32 SYSTEM UTILITIES TOOLKIT

D. Screen Management
Library

Overview

The Screen Management Library contains 20 different routines.
They include a mix of functions and procedures which can be
incorporated into your Pascal programs. Each Screen Management
routine is described on following pages.

The Screen Management routines included in this Library are:

CLREOLN (Clearto end of line)

CLREOP (Clear to end of page)
CLRLINE (Clear line)

CLS (Clear screen)

COL80 (Check for 80 column card)
CURSORX (Return X position of cursor)
CURSORY (Return Y position of cursor)
GETCHAR (Return keypress character)
GOTOXY (Move cursor to coordinates X,Y)
IDMACHINE (Return machine ID information)
INVERSE (Set inverse mode)

NORMAL (Set video to normal)

ON40 (Enable 40 column display)
ON80 (Enable 80 column display)
SCROLLDOWN (Scroll down 1 line)
SCROLLUP (Scrollup 1 line)
SCRNBOTTOM (Set bottom screen margin)
SCRNFULL (Return display to full size)
SCRNTOP (Set top screen margin)

TAB (Move cursor to position X)

SYSTEM UTILITIES TOOLKIT |- 33

SCREEN MANAGEMENT LIBRARY

Using the Screen Management Library

To use the Screen Management routines, you must first “include” the
desired routine after the variable and type declarations in your Pascal
program. (Please refer to Chapter lll of the Kyan Pascal User Manual
for more information about the use of Include files in Pascal
programs.) Once the routine is included, you can call the routines as
often as needed in your program.

Notes

1. Don' forget to place a copy of all the files "included” in your Pascal
program in the same working directory as the main program. |f you
forget, the compiler will not be able to find the file and a "File Not
Found" compiler error will occur.

2. There are no global types to be declared with Screen Management
routines.

3. The Screen Management routines use the following convention:

Cursor X position: 0 thru 39 (0 thru 79 in 80 column mode)
Cursor Y position: 0 thru 23

|- 34 SYSTEM UTILITIES TOOLKIT

SCREEN MANAGEMENT LIBRARY

command Name: Clear to End of Line
Syntax: Procedure CLREOLN;

Description: Clear from the cursor to the end of the line.

ARNAAARRARNARAAAARARNAARRRAARNRARAR

Command Name: Clear to End of Page

Syntax: Procedure CLREOP;

Description: Clear from the cursor to the end of the page.

RARRRARANANARARRARAARA SR AAN DR R A hh

Command Name: Clear Line

Syntax: Procedure CLRLINE;

Description: Clear horizontal line y. Cursor does not move.

ARRRARRARRNRAR R AR AR ARRRRARAARRAN AL

Command Name: Clear Screen
Syntax: Procedure CLS;

Description: Clear the current text display.

SYSTEM UTILITIES TOOLKIT |- 35

SCREEN MANAGEMENT LIBRARY

Command Name: Column 80
Syntax: Function COL80 : Boolean;

Description: Returns the value TRUE if the 80 column firmware is
active.

AAAR RN AR AR R AN AR R AR R AR A AN ARANRAR

Command Name: Cursor X Position
Syntax: Function CURSORX : Integer;

Description: Return the X (horizontal) position of the cursor.

BARRRANA A NN RN RAAAR A AR A AN ARNRA R A A

Command Name: Cursor Y Position
Syntax: Function CURSORY : Integer;

Description: Returns the Y (vertical) position of the cursor.

KARRARARR AN R R AR AR R AN N A AN RN AR R A AN

Command Name: Get Character
Syntax: Function GETCHAR : Char;

Description: Wait for a keypress and then return it as a character.

I- 36 SYSTEM UTILITIES TOOLKIT

SCREEN MANAGEMENT LIBRARY

Command Name: Go To Position X,Y
Syntax: Procedure GOTOXY (x,y : integer);

Description: Move the cursor to screen coordinates (X,Y). If the
values passed are out of the range of the current screen (for example,
an x coordinate of 65 while in forty column mode), the command is
ignored.

Notes:

1. Be sure to use this GOTOXY routine and not any previously
published versions. This routine automatically recognizes the four
different versions of the Apple Il and treats the firmware accordingly.

2. GOTOXY (0,0) moves the cursor to the top left corner of the
screen.

RAANAARARRRARAAARARRBRAARARAARANR AN

Command Name: Identify Hardware Configuration

Syntax: Procedure IDMACHINE (VAR version : Char; VAR card8o,
extend80 : Boolean);

Description: Returns information regarding the hardware
configuration as follows:

version: "'~ Apple |
‘+' - Apple][+
'E' - Apple //e
‘e’ - Apple //e with 65¢02 chips
'c' - Apple //c

card80 Returns TRUE if an 80 column card is found

extended80 Returns TRUE if the system has more than
64K of memory.

SYSTEM UTIUITIES TOOLKIT |- 37

SCREEN MANAGEMENT LIBRARY

Command Name: Inverse Screen Mode

Syntax: Procedure INVERSE;

Description: Set the screen to inverse mode. Note that lower case
characters do not appear correctly in the 40 column mode.

KRR RARAR AR AR NI AARR A AR AN R AR hhd

Command Name: Normal Screen Mode

Syntax: Procedure NORMAL;

Description: Return the screen mode to normal.

AARRRRRANNER AR AR AN ARARAR A AR ARAAAN

Command Name: Enable 40 Column Display

Syntax: Procedure ON40;

Description: Enable the 40 column display (this procedure
disables the firmware in the 80 column card).

ARBANAAARARRRARARA AR A AR R AR Ahdd

Command Name: Enable 80 Column Display
Syntax: Procedure ON80;

Description: Enable the 80 column display. If the system does not
contain an 80 column card, this command is ignored.

f- 38 SYSTEM UTILITIES TOOLKIT

SCREEN MANAGEMENT LIBRARY

Command Name: Scroll Down
Syntax: Procedure SCROLLDOWN;

Description: Scroll the 80 column display down one line. The
cursor position remains unchanged.

IZ222 2222222322222 2223222222222 2dd

Command Name: Scroll Up
Syntax: Procedure SCROLLUP;

Description: Scroli the 80 column display up one line. The cursor
position remains unchanged.

RAERARARAAAAAARAA RN RAA R AR A AN RN A RA

Command Name: Screen Boitom
Syntax: Procedure SCRNBOTTOM (x : INTEGER);

Description: Set the bottom margin of the video screen to a value
between 0 and 23. This command effects the scope of the CLS
command. The SCRNTOP and SCRNBOTTOM procedures are used
to limit video output. Setting SCRNTOP and SCRNBOTTOM to the
same value will limit the screen to single vertical line of text. The
position of this line is determined by the value passed to the
procedures.

SYSTEM UTILITIES TOOLKIT |- 39

SCREEN MANAGEMENT LIBRARY

Command Name: Screen Full

Syntax: Procedure SCRNFULL;

~

Description: This procedure cancels the SCRNTOP and
SCRNBOTTOM commands and returns the screen to full size.

AR RRARAAARR AN ARRARNAANAAANARRARR

Command Name: Screen Top
Syntax: Procedure SCRNTOP (x : Integer);

Description: Set the top margin of the video screen to a value
between 0 and 23. This command effects the scope of the CLS
command. The SCRNTOP and SCRNBOTTOM procedures are used
to limit video output. Setting SCRNTOP and SCRNBOTTOM to the
same value will limit the screen to single vertical line of text. The
position of this line is determined by the value passed to the
procedures.

ANRARR AR AR AR AR N AR R AR NN AR AN R AR

Command Name: Tab
Syntax: Procedure TAB (x : Integer);

Description: Move the cursor to position X in the current horizontal
line. Out of range values are ignored.

- 40 SYSTEM UTILITIES TOOLKIT

E. Other System Utilities

Overview
The Other System Utilities Directory contains the following routines.

o Random Number Routines

REAL (Generates a random number between 0 and 1)
RANDOM (Generates a random integer in range, min..max)
SEED ("Seeds" the random number generator)

o Conversion Routines
REAL NUMBER TO STRING
INTEGER TO STRING
STRING TO REAL NUMBER
STRING TOINTEGER

o Line Parse Routine

o Sort/Merge Routine

Using Other System Utilities

To use the Other System Utilities, you must first "include” the global
type declarations (if any) and the desired routines afier the variable
and type declarations in your Pascal program. (Please refer to
Chapter Il of the Kyan Pascal User Manual for more information about
the use of Include files in Pascal programs.) Once the routine is
included, you can call the routine as often as needed in your program.

Note: Don't forget to place a copy of all the files "included" in your
Pascal program in the same working directory as the main program. I
you forget, the compiler will not be able to find the file and a "File Not
Found" error will occur.

SYSTEM UTILITIES TOOLKIT |- 41

OTHER SYSTEM UTILITIES

Random Number Routines

There are three routines in this group. They can be used in your
Pascal programs to generate random numbers.

There are no global types associated with these routines.

RRARRNRAREARR R AR AN R AR AR AN AR RARRRR A AR R RN A A AR AR AR AR AR AR A A AR A h

Command Name: Random Number 1
Syntax: FUNCTION RND: REAL;

Description: Generates a real random number between 0 and 1.

BRARRARRAARARARRARANRAR R RARRARRAR A AR R ARAARARAAANARN AR A AR AR

Command Name: Random Number 2

Syntax: FUNCTION RANDOM (min, max : INTEGER) : INTEGER;
Description: Returns a random integer between min and max.
Note: Random Number 2 utilizes Random Numbner 1 (FUNCTION
RND) in its source code. As a result, you must be certain to include a

copy of the Random Number 1 routine in any programs which use
Random Number 2.

- 42 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

Command Name: Seed Random Number

Syntax: PROCEDURE SEED (seed1 seed2, seed3 seed4:
INTEGER);

Description: This routine is used in conjunction with either of the
random number generators to "seed" the string of random numbers
generated. Using this routine, it is possible to fix the starting value of
the random number sequence.

To "seed" the Random Number Generator, you first include the Seed
and Random Number procedures in your Pascal program. Then, you
specify four integers of your choosing (i.e., seed1, seed2, seed3,
seed4). When the program runs, the Random Number Generator
takes these four values, inputs them into its polynomial equation, and
generates a sequence of random numbers. Everytime the program is
run, the Random Number Generator produces the same sequence of
random numbers. To change the sequence, you simply change one
or more of the seed values.

SYSTEM UTILITIES TOOLKIT 1- 43

OTHER SYSTEM UTILITIES

Conversion Routines

This group contains four conversion routines and one global type file.

The global types can be declared by adding the following lines of
code to the declarations portion of your Pascal program or by
including the file CONV.TYPES.I tound on the System Ultilities
disk.

STRING6 = ARRAY]1.. 6] OF CHAR,
STRING20 = ARRAY[1..20] OF CHAR;

AARRARARARARRR AR AN R R AR AR R R AR A AR RRRAR RN AR AN AAA AR AR AR

Command Name: Real to String Conversion

Syntax: PROCEDURE REALTOSTR (VAR number:REAL; leading,
decpt: INTEGER; VAR result: String20);

Description: This routine returns a STRING20 type in the format
indicated by "leading” and "decpt”. "Leading” is the number of
characters to use for the leading digits in the resulting string. "Decpt”
is the number of decimal places allowed for expansion. For example:

REALNUM:= 35932.382;
REALTOSTR (REALNUM, 10, 5, ANSWER);
WRITELN (ANSWER);

will output: 35932.38200 (note the five leading spaces)
Notes:

1. Extra space must be left for negative signs in the "leading”
specification. Also, if you specify "leading” to be zero, scientific
notation will be used for output.

2. If the real number is too large to fit into the string, the string
returned will be filled with # symbols. Also, if the leading characters fit
but the number of decimal places do not, then as many numbers to
the right of the decimal point that will fit will be used.

|- 44 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

Command Name: Integer to String Conversion

Syntax: PROCEDURE INTTOSTR (number: INTEGER,; justify:
CHAR; VAR result: String6);

Description: This routine converts the integer passed into string.
A leading minus is used when the value is negative. Justification
characters are:

R Right justify number, buffering to left with spaces

z Right justify number, buffering to left with zeros

L Left justify with spaces to right (default).
Notes:
1. Any unrecognizable justify characters are treated as Left.

2. The justify character passed must be a capital letter.

ARAARR AR ARAARRARRRRARRARRNRA AN AR R ARARRRRAARRAAARANAAAS A AN NS

Command Name: String to Real Conversion

Syntax: FUNCTION STRTOREAL (VAR number: String20) : REAL;
Description: This routine converts a string passed to a real number.
Notes:

1. Non-numeric characters are ignored.

2. The first decimal point encountered is used for conversion.

3. Negative numbers are valid if the first character in the string is a

SYSTEM UTILITIES TOOLKIT |- 45

OTHER SYSTEM UTILITIES

Command Name: String to Integer Conversion
Syntax: FUNCTION STRTOINT (VAR number: String6) : INTEGER;
Description: This routine converts a string passed 1o an integer.
Notes:

1. All non-numeric characters are treated as zeroes.

2. Aleading minus will give the INTEGER a negative value.

I- 46 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

Line Parsing Routine

The Line Parsing routine gives you a method by which to read and
"parse” parameter inputs to a program. The source of this input can be
the keyboard or another Pascal program. The line parser reads the
input string in the Apple input buffer (location $200 to $2FF); it then
looks for spaces and breaks the string into records (words); next, it puts
these records into a linked list; and, finally, it returns a pointer which
identifies the location of the first record in the linked list.

To use the line parsing routine, you must first declare certain global
types in your Pascal program. You can declare these global types by
adding the following code to the global declarations portion of your
Pascal program or by including the Parse.Types.! file found in the
Cther Utilities directory.

String127 = ARRAY [1..127] of CHAR;
StrPointer = AStrRecord;
StrRecord = RECORD
StrFound : String127,
NextStr : StrPointer
END;

ARARRRARRNRA A AN AR A RRAR AR AR AR R AN ANNR AN A AR R AR A AR AR A d

Command Name: Line Parse Routine
Syntax: FUNCTION PARSELINE : StrPointer;

Description: This routine returns a pointer to a linked list containing
the records or words found in the line passed. The records are
considered terminated when they are followed by at least one space
(blank). If a blank line is passed to PARSELINE, the pointer 'ParseLine’
will point to NIL.

SYSTEM UTILITIES TOOLKIT |- 47

OTHER SYSTEM UTILITIES

Merge and Sort Routines

The merge and sort routines are very handy for organizing your files.
The MERGE procedure will combine up to five presorted files into a
single file that is in alphabetically and/or numerically ascending or
descending order. The SORT procedure will arrange a file of any type
of record into alphabetical or numerical order.

Global Declarations

To use one, or both, of the routines in a Pascal program, you must first
Include the file "SRTMERG.TYPES.1", which declares the data types for
both of the procedures. This include file declares the following:

PATHSTRING = ARRAY {1..65] OF CHAR;

NAMEARRAY = ARRAY [1..7] OF PATHSTRING;

FIELD_TYPE = (ALPHA_FIELD, INTEGER_FIELD,
REAL_FIELD);

MERGE also requires the declaration of a VARiable of type
NAMEARRAY in which pathnames will be stored. You can declare your
own or include the file "SRTMERG.VARS.I" into the global VAR section
of your program. For convenience sake, we will assume you have
included the SRTMERG.VARS.I file and are using MERGENAMES as
your global VARiable of type NAMEARRAY.

Using the MERGE Routine

The MERGE procedure takes between two and five ordered data files,
sorts records as they are encountered, and produces one large
resultant file containing those merged records. You must specify which
files are to be used as source, and the name of the ‘intermediate’ (or
temporary) file for the completely merged image. You even have the
option to specify a second destination file.

The MERGE procedure is stored in file "MERGE.L." The procedure is
declared as follows:

PROCEDURE MERGE (VAR MERGENAMES: NAMEARRAY;
SELECT, FNUM, RLEN, KLEN, OSET, ORDER: INTEGER,;
KTYPE: FIELD_TYPE);

I- 48 SYSTEM UTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

The Parameters are;

MERGENAMES: The MERGE procedure permits you to
sort/merge up to five data files. The names of these files must be
stored sequentially in MERGENAMES][1..5], starting at element 1.
MERGENAMES][6] must contain the pathname of a temporary file to
which the MERGE procedure will write out the merged file. The
pathname in MERGENAMES(6] must be a valid pathname (if it is not,
MERGE will fail immediately). MERGENAMES][7] may contain a different
name for the resulting data file if you wish, or be left blank, depending
on the value of SELECT below.

SELECT: SELECT is an index to array MERGENAMES; it must
be in the range of 1 to 7 inclusive. SELECT indicates what filename to
use as a destination file for the resulting merge output file. Iif SELECT
has a value between 1 and 5, the corresponding data file pathname will
be used to write the merged file to, thus replacing the data file
contents. If SELECT is 6, the temporary filename indicated by
MERGENAMES will be left the only output as a result of the MERGE
call. If SELECT is 7, the pathname stored in MERGENAMES][7] will be
used as a final output destination by MERGE.

ENUM: FNUM is the number of data files to be merged
together by the MERGE procedure. Think of this number as an index
to the last pathname in the MERGENAMES array you want merged.
FNUM must have a value between 2 and 5 inclusive.

RLEN; RLEN is the record length in bytes. In general, record
length is fairly easy to calculate. For more information on calculating
record lengths and storage sizes by types please consult the Assembly
Language programming section of your Kyan Pascal User Manual.

KLEN: KLEN is the length of the key record field in bytes. If
you are sorting with a key field of either REALs or INTEGERs, KLEN is
automatically set according to type (8 for REAL or 2 for INTEGER).
However, using a key made up of CHARacters (alpha_field) will cause
the comparison of the keys to take place against KLEN number of
characters. KLEN cannot be longer than 255 bytes.

SYSTEM UTILITIES TOOLKIT |- 49

OTHER SYSTEM UTILITIES

OSET: OSET is the byte offset of the first byte of the key field
in the record. OSET can be thought of as the number of bytes found in
the record before the first byte of the key field. Therefore, if the key
field in your record was the first field declared, OSET would be passed
as a 0, since there are no bytes before the key field in that record
layout.

ORDER: ORDER determines in what fashion the resulting
sorted file's records will be stored. If ORDER is negative, the records
will be sorted in descending (highest first) order. If ORDER is non-
negative (zero or positive), the records will be sorted in ascending order
(lowest first).

KTYPE: KTYPE indicates the type of key field you have
specified. If you are using a key that is a character or an array of
characters, specify ALPHA_FIELD as KTYPE. If you are using
INTEGERS, specify INTEGER_FIELD; if sorting against real numbers
use REAL_FIELD as KTYPE.

Using the ESORT routine
The ESORT routine requires the following:
1. The SRTMERG.TYPES.! file be included as global types
2. The SRTMERG.VARS.! file be included as global variables
3. The MERGE.! file be included in the Pascal host program
previous to the ESORT procedure.

The global VARiables declared in SRTMERG.VAR.| are:

FYLE : PATHSTRING;
MERGENAMES : NAMEARRAY;
KTYPE : FIELD_TYPE;
RLEN, OSET,

ORDER, KLEN,

FNUM, SELECT INTEGER,;

I- 50 SYSTEMUTILITIES TOOLKIT

OTHER SYSTEM UTILITIES

Each variable listed must be conditioned before calling the ESORT
routine.

ESORT should be used when one data file containing records with key
fields must be sorted. This is accomplished by following these steps:

1. Assign the name of the file to be sorted to the global
variable FYLE. Note that the name of the file to

be sorted cannot be longer than 62 characters (ESORT
needs the remaining bytes in order to append file suffixes to
the pathname specified)

2. The global variables RLEN, KLEN, OSET, ORDER, and
KTYPE must be assigned values corresponding to those
explained in the MERGE documentation.

3. Call ESORT (remember - ESORT has NO PARAMETERS))
The parameters in MERGE and the global variables used by
ESORT have the same name. However, you should always
remember to assign the global variables their correct values
before calling ESORT.

SYSTEM UTILITIES TOOLKIT 1- 51

OTHER SYSTEM UTILITIES

1- 62 SYSTEM UTILITIES TOOLKIT

F. APPENDIX
UTILITIES DISK DIRECTORY

Volume Name: UTILITY.TOOLKIT

Directory: ProDOS.LIB
include Files: PRODOS.TYPES.| (Global Types)

DELETE.I
RENAME.|
COPY.|
SETPREFIX.|
GETPREFIX.I
APPEND.|
LOCK.I
UNLOCK.I
MAKEDIR.|
REMDIR.I
GETDIR.I
FIND.I
SCANFILE.|
FILETYPE.I
BSAVE.|
BLOAD.I
FORMAT.I
GETCLOCK.I
GETTIME.I
GETDATE.I
SETCLOCK.I
SETTIME.|
SETDATE.I
FINDCLOCK.I
PRTMLIERROR.I
PRINTFILE.I

SYSTEM UTILITIES TOOLKIT |1- 53

APPENDIX

Directory:

Include Files:

DIRECTORY:

Inciude Files:

DEVICE.LIB

FINDMOUSE.I
INITMOUSE.I
MOUSECLICK.I
MOUSEHELD.I
MOUSEMOVED.|
MOUSEX.|
MOUSEY I
ZEROMOUSE.|
SETMOUSEXY 1
SETXBOUNDS.I
SETYBOUNDS.|
HOMEMOUSE.|
ENDMOUSE.|
PRTMOUSECHAR.|
BUTTONO.I
BUTTON?1.I
JOYSTXI
JOYSTY.I

SCREEN.LIB

CLs.
GOTOXY.|
TAB.I
INVERSE.I
NORMAL.I
SCROLLUP.I
SCROLLDOWNL.I
CLRLINE.I
CLREOLN.I
CLREOP.I
coLso.l
CURSORX.|
CURSORY |
GETCHAR.I
SCRNTOP.I
SCRNBOTTOM.I
SCRNFULL.I
IDMACHINE.|
ON40.1

ONB80.1

- 54 SYSTEM UTILITIES TOOLKIT

APPENDIX

Directory: OTHER.LIB
Incl Files: CONV.TYPES.I (Global Types)
REALTOSTR.!
STRTOREAL.I
INTTOSTR.I
STRTOINT.I

SEED.I
RND.I
RANDOM.I

SRTMERG.TYPES.| (Global Types)
SRTMERG.VARS.I (Global Variables)

ESORT.!

MERGE.I

PARSE.TYPES.|

PARSELINE.I
Directory: DEMO.LIB

CATALOG.P (Source Code)
CATALOG (Object Code)

MOUSE.DEMO.P (Source)
MOUSE.DEMO (Object)

RANDOM.DEMO.P (Source)
RANDOM.DEMO (Object)

ESORT.DEMO.P (Source)
ESORT.DEMO (Object)

MERGE.DEMO.P (Source)
MERGE.DEMO (Object)

MOUSETEXT.DEMO (Object)
TURTLE.DEMO (Object)

SYSTEM UTILITIES TOOLKIT 1- 55

Suggestion Box

We do our best to provide you with complete, bug-free software and

documentation. With products as complex as compilers and program-
ming utilities, this is difficult to do. I you find any bugs or areas where
the documentation is unclear, please let us know. We will do our best
to correct the problem in the next revision. We would also like to hear
from you if have any comments or suggestions regarding our product.

To help us better understand your comments please use the following
form in your correspondence and mail it to: Kyan Software Inc.,
1850 Union Street #183, San Francisco, CA 94123.

Name
Address
City State ZIP
Telephone:
(day) (evening)
Kind of Problem Software Description
__ Software Bug Product Name
___Documentation Error Version No.
__ Suggestions Date Purchased
__ Other
Kyan Software Products You Use
__Kyan Pascal ___Kyan Macro Assembler/Linker
__ System. Utilities Toolkit ___ Advanced Graphics Toolkit
__MouseText Toolkit __MouseGraphics Toolkit
__ TurtleGraphics Toolkit __ Other

Your Hardware Configuration
Type/Model of Computer

How many and what kind of disk drives
What is your screen capability: ___40 Column ___ 80 Column

How much RAM? K (what kind of RAM Board?)
What kind of printer and interface card do you use?

What kind of modem?

Other information about your computer system:

What do you use this software for?
____Education (lama __ teacher __student)
___Hobby
__ Professional Software Development

____ Other

Problem Description (if appropriate, please include a disk or
program listing).

Suggestions

TI 8605A

O

21N

e Quick Guide to Kyan Pascal

(5] !

KiIx™ Cdmmand ‘Summary

Command

C40
C80
CAT []

CD]
CFG
CHMOD []

CMP 1 2
CMP (s,d) (s,d)
CPI]I[]
CPV (s,d) (s,d)
DATE[]
ECHO []
FIND d-f

FORMAT (s,d)[]
GREP a b

KIX
LPR]
LS/
LS|]

MENU
MKDIR []
MVII[]

Description
«- et 40 Column Mode

Set 80 Column Mode
Display File Contents

Change Directory

Options/Arguments

-n
-b

-V

System Configuration Program

Add/rempve Eile-Access

.(+ add / - remove) -

Compare Files
Compare Volumes
Copy Files

Copy Volume

Set System Date/Time

YN

+/-w

+/-d
+/--n
1,12
(s.d)
i
(s,d)

Print Pathname Evaluations.

Print File Pathnames

Format Disk, Volume Name

Search for Pattern

KIX Command Summary

Print Files Listed
List Volumes

List Contents of File
or Directory

System Main Menu
Make Directory
Rename or Move Files

f
(s.d)

-

-f

-P

-N
;type

-i
-f

It

Number Output Lines
Skip Blank Lines
Remove Blank Lines
Print ASCIl Equiv. of
Control Chars.

Read

Write

Deletion

Rename

File1,File2
(Slot,Drive)
Destination Replace
(Slot,Drive)

Directory List

File to Be Found
(Slot,Drive}

Pattern or String
List to Be Searched

Extended Directory
List File Types '
List Protection Status
Don’t Sort Filenames
List Only Files of
Type Specified

Prompt for Rename .
Rename Locked Files

© 1986

Kyan Software, Inc.

San Francisco, California

KIX™ Command Summary cContinued

Command Description

PWD Print Working Directory

QuIT Exit KIX to ProDOS Quit
RM [] Remove Files

RMDIR [] Remove Directory

SD Screen Dump to Printer
SDIFF f1 2 Compare Files &

Display Differences

- Kyan Text Editor

Cursor Movement Commands

Options/Arguments

-i Prompt for Delete

-f Delete Locked Files
-r Empty Directories
f1,fi2 = File1,File2

<CNTL>-S Move Cursor 1 Space to Left
<CNTL>-D Move Cursor 1 Space to Right
<CNTL>-A Move Cursor 1 Word to Left
<CNTL>-F Move Cursor 1 Word to Right
<CNTL>-E Move Cursor 1 Line Up
<CNTL>-X Move Cursor 1 Line Down
<CNTL>-R Move Cursor 20 Lines Up
<CNTL>-C Move Cursor 20 Lines Down
<CNTL>T Move Cursor to TOP of File
<CNTL>-V Move Cursor {10 BOTTOM of File

Character Deletion Commands

<CNTL>-G Delete Character Cursor is On

<CNTL>-Q Delete Character to Left of Cursor
(EQUIVALENT TO THE APPLE I

<CNTL>Y Delete Line Cursor is On

Cut and Paste Commands

DELETE KEY).

<CNTL>-0 Start or Finish Cut.
<CNTL>-P Paste Copy.
<CNTL>-L Save Cut Text in New File

Search Co‘mmands

< CNTL>-Z Move Cursor Forward to Next Occurrence.
< CNTL>-W Move Cursor Backward to Next Occurrence.

Command Syntax: ED Pathname

KIX is a Trademark of Kyan Software, Inc.

Kyan Pascal Compiler

Compiler Options

-O pathname Assign New Pathname to Compiled File
-5 Generate Assembly Source Code File Only
-D ~ Print Line Number and Filename On Runtime Error.

Redirection Option

>n Direct Output to Slot n (n=1..7)
> pathname Send Output to File

Command Syntax: PC Pathname - Options .

Kyan Assembler

~ Assembler Options

-1 Print a Listing.
-0 pathname Assign New Pathname to Output File.

 Redirection Optipns

> pathname Direct Output to a File
>n Direct Output to Slot n (n=1..7)

Command Syntax: AS Pathname - Options

Assembler Directives

ORG Origin: Assembled code should start at the specified location in memory

EQU Equate: Assign a value to the label whenever it appears in the program

DB/DW Define Byte and Define Word: Indicates the location in memory of a
string or table.

> Least Significant Byte (LSB): Indicates least significant byte of a 2-byte
hex number.

< Most Significant Byte (MSB): Indicates most significant byte of a 2-byte
hex number

DS Define Storage: Saves space for number of bytes in the expression field.

' STR String: Counts characters in an expression field and puts number in first
byte followed by the ASCII values of each character.

IFDEF If Defined: Assembles code if identifier in the expression field is defined

IFNDEF If Not Defined: Assembles code if identifier in the expression is not

defined

Assembler Directives Continued

Symbol

IFEQ , :
IFNE 57

ELSE

ENDIF

INCLUDE
LST ON ;..
LST OFF .
DSECT

DEND

MACRO-
ENDM |
MEX ON.
MEX OFF

SYS
ASC

DFLAG

If Equal: Assembles code if the expression is equal to zero
If Not Equal: Assembies code if expression is not equal to zero

Else: Follows one of the IF- directives and reverses the conditional
assembly :

End If: Ends the conditional assembly associated with IF- or IF- ELSE
directives

Include file in expression field

Listing On: Turns on listing at that point.

Listing Off: Turns off the listing.

Data Section: Defines memory for data only.

Data End: Ends memory reserved for data only.

Macro definition follows.

Macro definition ends

Macro EXpansion ON for listing.

Macro EXpansion OFF for listing.

SYStem: Makes executable file a system file. :

ASCii: Puts ASCII values of strings in expression field following the
directive

Define FLAG: Used with IFDEF and IFNDEF to assemble code required
by already assembled macros or code segments.

Reference to ISO Standard Pascal

Standard Identifiers = :

STRUCTURED: Array, File, Set, Record CONSTANTS: False, MaxInt, True

Data Types

POINTERS
SIMPLE:

‘Real

..Predefined (Bnolean,
Integer, Char)
..Subrange

TYPES: Boolean, Char, Integer, Real, Text

VARIABLES: input, Output ’ _
Ordinal FUNCTIONS: Abs, ArcTan, Chr, Cos, Eof, Eoln,
~Enumerated - Exp, Ln, Odd, Ord, Pred,

Round, Sin, Sqr, Sqart, Succ, Trunc
.PROCEDURES: Dispose, Get, New, Pack, Page, Put,

Read, ReadIn, Reset, Rewrite,
Unpack, Write, Writeln

Table of ymbol

SPECIAL SYMBOLS

+ -
< >

(

T

i

[

WORD SYMBOLS (RESERVED WORDS)

and div file in of record type
= (" array do for label or repeat until
<> begin downto function mod packed set var
: case else goto nil procedure then while

t {3 const end if not program to with

