
“Hacking it In”
And

“UnPacking It Out”

Portable HackBytes in C
A Case Study: Cross-Platform Development for the Apple IIgs

By: Bill Buckels © Copyright 2014. All Rights Reserved.
Research by: Charlie

Andy McFadden
Antoine Vignau and Olivier Zardini
STYNX (Jonas Grönhagen)
Alex Lee
Rob

ImageMagick Palettization by: STYNX (Jonas Grönhagen)
Not endorsed by: FaddenSoft LLC and Andy McFadden

Brutal Deluxe Software (Antoine and Olivier)
Especially Not endorsed by: Apple Computer and APDA

Portable HackBytes – Hacking it In and UnPacking It Out

Table of Contents

Portable HackBytes – Hacking it In and UnPacking It Out ... 2
Table of Contents ... 2
Forward .. 3
Licence Agreement and Disclaimer ... 5

UnPackBytes() Licence ... 7
Endorsement Disclaimer .. 7

Acknowledgment ... 8
Introduction .. 9

Input/Output File Extension - SHR#C10000 - Pic .. 10
Input/Output File Extension - SH3#C10002 - Brooks ... 11
Input/Output File Extension - PAK#C00001 – Eagle/PackBytes 11
PAK versus APF .. 12

No Interpretation Needed .. 12
Less Disk Space ... 12
Better Optimization .. 12

Input/Output File Extension - PNT#C00002 - APF .. 13
Input/Output File Extension – PA3#C00004 – Brooks Eagle/PackBytes 15
Additional SHR File Format Notes .. 16

P2P – Pic to Pnt Portable HackBytes Example Program ... 17
Program Organization .. 18
The HackBytes() Function ... 19
HackQuads and the Mid-Stream Encoder .. 27
HackBytes and the Main Stream Encoder ... 28
Portable HackBytes() Optimizations Table ... 29

The HackQuads() Function ... 31
Encoding 256 Color PAK Files with “Dry-Runs” and “Wet-Runs” 34
Encoding 3200 Color Brooks PAK Files ... 36
Encoding APF Files ... 39
Transforming “raw” SHR Settings to APF File Settings ... 41
Little Endian and Big Endian Helper Functions .. 42
Brooks Palette to APF Palette Helper Function .. 44

The UnPackBytes() Function ... 45
Decoding Packed SHR Files with UnPackBytes ... 48
Test Results - Compatibility And Regression .. 58
Test Results - Performance – Comparing Apples to Bananas ... 60

Test Results - Mode3200 Files .. 60
The Contenders - Not Your Father’s SHR Converter .. 61
Test Results – Mode320 Files .. 61
Comparing Apples to Apples ... 63

5/7/2014 Portable HackBytes in C – a Case Study Page 2 of 64

Forward

This article provides a working program called “p2p” as a practical and portable C
language programming example of using Apple IIgs “PackBytes” Run-Length Encoding
(RLE).

Also provided in this article is a relatively detailed description of Portable HackBytes.
This is the PackBytes encoder that I have written, and that I demonstrate in the p2p
program and explain in this document.

PackBytes and UnPackBytes are data compression and unpacking routines native to the
Apple IIgs and built-in to the Apple IIgs System Software. If you wish to write programs
that do not use the native Apple IIgs routines to support the PackBytes RLE , you need to
include a PackBytes encoder and/or an UnPackBytes decoder in your program.

PackBytes and UnPackBytes are built-in to standard Apple IIgs device-dependent
graphics file formats targeted at the Apple IIgs Super-Hi Resolution (SHR) display, like
the Apple Preferred Format (APF) and the Eagle/PackBytes (PAK) format (both
demonstrated in p2p), but other encoded or compressed graphics file formats of the day
like PCX and GIF were much more widely used in the wild for lossless graphics
interchange. On computers like the IBM-PC, since it has never made much sense to store
graphics in Apple IIgs device-dependent formats, like APF or Eagle/PackBytes, which
use the PackBytes RLE, the C language source code for a PackBytes encoder seems non-
existent.

However, thanks to Andy McFadden, the author of CiderPress, C++ source code for
CiderPress’s UnPackBytes has been available for quite some time outside the Apple IIgs
(and is modified for use in p2p).

Portable HackBytes achieves slightly better compression than Apple Computer’s
PackBytes encoder by using a simple list processor and simple logic.

Images encoded using either encoder both decode with the same decoders.

In Lesson 2 of his tutorial “Hacking Data Compression”, Andy McFadden explains
how the Apple IIgs PackBytes encoder works. The way Portable HackBytes encodes
repeats is different than in Andy’s explanation. Perhaps the way Portable HackBytes
works in its entirety is different, but I can’t really tell from Andy’s explanation.

I have never used, nor have I done any analysis on Apple’s implementation of their
PackBytes encoder, except to read Andy’s explanation and to compare the size of files

5/7/2014 Portable HackBytes in C – a Case Study Page 3 of 64

http://www.fadden.com/techmisc/hdc/
http://www.fadden.com/techmisc/hdc/lesson02.htm

produced by Apple Computer’s PackBytes encoder to the smaller size of equivalent files
produced by Portable HackBytes.

After reading Andy’s explanation, I decided that UnPackBytes wouldn’t care how the
encoder worked as long as everything decoded properly, and a PackBytes encoder could
be both fearless and portable. So I wrote Portable HackBytes, in its entirety using
common sense (fundamentally based on Andy McFadden’s comments in the CiderPress
PackBytes decoder combined with my own brute-force logic).

I got interested in SHR images almost a year ago. With the help of several other Apple II
enthusiasts in the comp.sys.csa2 Internet News Group, I gathered all the historical
information I could “get my hands-on” about SHR. I quickly learned that, while several
SHR formats existed, the two “raw” screen-size formats (“PIC” and “Brooks”) and the
“APF” format provide support for almost everything that SHR graphics can be used for.
So I set-out to write loaders and conversion utilities in an effort to achieve a reasonably
competent knowledge level about using these in my Apple II programming.

The first thing I did was write two 8-bit loaders in Aztec C65; one for “raw” mode320
and mode640 “PIC” files, and another for the equivalent APF files. But to this day I have
yet to complete a loader for “Brooks” mode3200 files (a feat not as easily accomplished
as loaders for the other two).

For my APF loader noted above, I was able to write UnPackBytes easily by adapting
Andy McFadden’s C++ UnPackBytes from CiderPress.

When it came to writing my SHR converters, I stayed away from the APF format, and
stuck with “raw” format output, because I had not yet put the effort into writing a
PackBytes encoder (a feat not as easily accomplished as plagiarizing UnPackBytes from
Andy’s C++ code).

I have yet to run across any C or C++ source to encode to APF or Eagle/PackBytes from
“raw” format SHR files. It seems to me that, in the absence of re-usable PackBytes code
in the C or C++ language, any APF or Eagle/PackBytes files that I have collected were
probably produced on the IIgs where PackBytes is very much a part of the system.

A few weeks back I decided to write a Portable PackBytes encoder in the C programming
language, both for the fun of it, but also to pass-on to other Apple II enthusiasts, whether
their desktop machines are Windows, Mac, or Linux computers. So after finishing the
Portable HackBytes encoder to a workable degree, with better compression than Apple
Computer’s PackBytes, I am writing this article; to share what I have learned through the
experience.

5/7/2014 Portable HackBytes in C – a Case Study Page 4 of 64

Licence Agreement and Disclaimer

Portable HackBytes © and p2p © Copyright Bill Buckels 2014.
All Rights Reserved.

UnPackBytes() Copyright © 2007, FaddenSoft, LLC.
All rights reserved.

Under the Conditions stated in the next sections of this document, you have a royalty-free
right to use, modify, reproduce and distribute the p2p program, including source code,
documentation, and the other baggage it comes with in any way whatsoever. Neither Bill
Buckels nor Andy McFadden has any warranty, liability, or endorsement obligations
resulting from said use and distribution in any way.

• Andy McFadden requests attribution for the use of UnPackBytes().
• The rest of the p2p program including Portable HackBytes needs no attribution.

Please read the next sections carefully.

5/7/2014 Portable HackBytes in C – a Case Study Page 5 of 64

UnPackBytes() Copyright (c) 2007, FaddenSoft, LLC. All rights reserved.

The UnPackBytes() function in the p2p program is taken literally from CiderPress
(ReformatBase.cpp). It is “dummied-down to” C from C++ and lightly modified, but by
itself likely does not merit consideration as a derivative work as used in the p2p program.
The p2p program itself is more like a derivative work (of CiderPress), but the
UnPackBytes() function itself likely does not merit consideration as a derivative work at
all, since its use in both CiderPress and p2p is not transformative, when compared to
Apple Computer’s UnPackBytes Apple IIgs ToolBox routine.

It would be a different story if the UnPackBytes() function in p2p was written before the
UnPackBytes Apple IIgs ToolBox routine. And it would be a different story if p2p used
the UnPackBytes() function in a significantly different manner from the general and
historical use of Apple Computer’s UnPackBytes().

The author of an original work or a derivative work has rights called “Copyright”. Since I
did not write UnPackBytes and my use of UnPackBytes is not significantly
transformative, I cannot grant permission for use of UnPackBytes. Also I don’t honestly
know if Andy’s Copyright extends to UnPackBytes or if Apple Computer’s Copyright
extends to UnPackBytes but I suspect that Apple Computer is the Copyright Holder. So
as you can see, this is quite a dilemma that seemingly does not stop. What I do know for
sure that it is both customary and a matter of good manners and etiquette to provide
attribution and to respect the licences of other software authors like Andy McFadden
when you use their code in your code.

The image above compressed by p2p using Portable HackBytes shows the users of a
Work enjoying access privileges.

5/7/2014 Portable HackBytes in C – a Case Study Page 6 of 64

UnPackBytes() Licence

Copyright © 2007, FaddenSoft, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Neither the name of FaddenSoft, LLC nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY FaddenSoft, LLC ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL FaddenSoft, LLC BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Endorsement Disclaimer

None of any of my work is endorsed by Andy McFadden. So “be very afraid”!

5/7/2014 Portable HackBytes in C – a Case Study Page 7 of 64

Acknowledgment

The 256 color APF file below converted by p2p using Portable HackBytes shows a recent
meeting of the French Apple IIgs Users Group:

First off this is not an endorsement of my work by Brutal Deluxe Software, so “be very
afraid”!

It is impossible to write graphics converters for the Apple IIgs and not be affected by the
brilliant and unparalleled work of Antoine Vignau and Olivier Zardini of Brutal Deluxe
Software. SHR Graphics on the Apple IIgs would not even still be alive without Brutal
Deluxe, and not nearly as alive in the first place. Right from the beginning of my Apple II
graphics development adventure in recent years, Antoine has been constant, always ready
with advice and pointing me to resources. When I advanced to IIgs graphics
development, Olivier Zardini also provided significant advice.

And for that, Brutal Deluxe Software gets special thanks, along with Andy McFadden
and STYNX and Charlie, for making Portable HackBytes possible.

Just for the record!

5/7/2014 Portable HackBytes in C – a Case Study Page 8 of 64

Introduction

According to Apple Computer, there are 2 ProDOS SHR FileTypes (used primarily on
the Apple IIgs). The p2p program and its Portable HackBytes encoder rolls with that:

• FileType $C1 - PIC – raw data
• FileType $C0 – PNT – transformed data

PIC files store their data in “raw” format. PNT files are SHR files produced by Paint
Programs and other programs with the savvy to transform and encode and decode them.

The Apple Preferred Format (APF) file and the Eagle/PackBytes file used primarily on
the Apple IIgs are PNT files. They store run-length encoded device dependent bitmapped
graphics images for display in Apple IIgs Super-Hi Res (SHR) mode320, mode640 and in
the case of APF, mode3200.

• The scan-lines in an APF file are not stored in “raw” format… each scan-line is
Run Length Encoded (RLE) individually using the Apple IIgs PackBytes RLE
format. Images stored in APF can be wider and longer than the screen.

5/7/2014 Portable HackBytes in C – a Case Study Page 9 of 64

• The entire Eagle/PackBytes file is encoded using PackBytes and since it is
nothing more than a PackBytes encoded file of SHR screen memory, it is
confined to screen resolution.

For the purposes of this article, and for most “practical” purposes (if indeed any practical
purposes exist today for Apple IIgs SHR graphics), I have confined my examples to
creating PNT files from screen-sized “raw” SHR images in the 3 graphics modes
supported by the APF file format.

The p2p program converts between PNT and PIC file formats in SHR screen resolution
only. For conversion to PNT format it uses Portable HackBytes and for conversion to PIC
format it uses UnPackBytes() adapted from CiderPress. For the purpose of SHR file
interchange using the p2p program, only 4 official SHR FileTypes and one unofficial File
Type are supported:

$Cx Types Input File
Any Name

Output File
Automatic Extension

$C0 PNT Apple IIgs Packed Super HiRes
$0000 Paintworks Packed Super Hi-Res Not Supported
$0001 Packed Super HiRes $C1 $0000 SHR
$0002 Apple Preferred Format $C1 $0000 SHR

$C1 $0002 SH3
$0003 Packed QuickDraw II PICT Not Supported
$0004 Packed Super HiRes 3200 “Brooks” $C1 $0002 SH3
$C1 PIC Apple IIgs Super HiRes
$0000 Super Hi-Res Screen Image $C0 $0001 PAK

$C0 $0002 PNT
$0001 QuickDraw PICT Not Supported
$0002 Super HiRes 3200 “Brooks” $C0 $0002 PNT

$C0 $0004 PA3

Input/Output File Extension - SHR#C10000 - Pic

/* FileType $C1 AuxType $0000 - mode320 and mode640 */
typedef struct tagPICFILE
{
 uchar line[200][160]; /* 3200 bytes */
 uchar scb[200];
 uchar padding[56];
 uchar pal[16][32];
} PICFILE;

The PIC File Aux Type 0000 is easiest and quickest to load. It is a RAW BSAVED
image of SHR memory, which includes 3200 bytes of screen memory of 200 x 160 byte
scanlines, followed by 200 scanline control bytes padded to 256 bytes, followed by 512
bytes of 16 palettes of 16 12 bit colors in an array of Motorola $0RGB Words.

5/7/2014 Portable HackBytes in C – a Case Study Page 10 of 64

Because the standard SHR Screen Memory is in two resolutions, mode320 and mode640,
which are selected by soft switches as part of the Screen Memory, this file format
supports both resolutions, but does not support images with higher resolutions than the
SHR screen. Even though this file is the lowest common denominator for SHR and
easiest to load, a specific load sequence including control over main and auxiliary
memory is still required, so something like intermediate programming skills are required
for this file to be of use by a programmer.

Input/Output File Extension - SH3#C10002 - Brooks

/* FileType $C1 AuxType $0002 - mode3200 */
typedef struct tagBROOKSFILE
{
 uchar line[200][160];
 uchar pal[200][32];
 /* $0RGB table buffer palette entries 0-16 reversed */
} BROOKSFILE;

The PIC File Aux Type 0002 (Brooks Format) is quick to load but not easy for a
programmer to display. Displaying this type of file requires that the program code is
constantly synching with internal screen updates to constantly move palettes in
Real-time from a buffer of 200 palettes into the 16 palettes supported by SHR. This
leaves little time for anything else, and less time on a slower Apple IIgs, and even less
time on an Apple IIe with an Apple Video Overlay Card (VOC) but no accelerator.

While Todd Whitesel has written a Brooks Loader for the VOC on an Apple IIgs, I have
never seen a VOC Brooks loader for the Apple IIe. I don't know whether an 8 bit
program like SHR View would work for Brooks on a IIe equipped with a VOC since I
don't have a VOC. Todd's file format for the VOC's standard interlace mode(from an
earlier effort) is also not as robust as my own, since it only allows half the palettes.

I am speculating that he likely based his format on what was easiest for him to create in
whatever IIgs Paint program he used at the time. I also have no evidence of any Brooks
format files that follow his HT and HB formats. While my BMP2SHR utility supports the
creation of Brooks Files for the VOC's interlace mode, in practice these may be quite
useless. P2p does not support those, or any provision for the VOC's interlace mode400 at
all, simply because I did not want to do the extra programming needed to convert “raw”
file pairs to “stretched” APF files of screen width, but with 400 lines.

Input/Output File Extension - PAK#C00001 – Eagle/PackBytes

The least elegant but the most efficient of the PNT format files supported by p2p is the
$C0, $0001 Packed Super HiRes. It is just an entire PIC file, encoded using PackBytes
encoding from start to finish. It is not “officially” extensible to BROOKS, and it is not
officially extensible to sizes smaller or larger than the SHR screen.

5/7/2014 Portable HackBytes in C – a Case Study Page 11 of 64

PAK versus APF

A Packed Super Hi Res file offers several advantages over a Screen Size APF:

No Interpretation Needed

• PAK files do not need to be interpreted. In almost the same way as a PIC file is
loaded, a PAK file is unpacked using UnPackBytes() directly into screen memory
as a “blob”. No further work required.

• Apple would probably not call Eagle/PackBytes “flexible” since it is consistently
simple. In fact, it is so simple that programs like Activision’s PaintWorks may
have decided not to support this format because it is too in-flexibly inelegant to
flexibly contain inflexible baggage like QuickDraw stuff not to be found
elsewhere on our flexible planet.

Less Disk Space

A PAK file generally takes up less space on a disk, since it hasn’t got the overhead of
“real” header like an APF.

Better Optimization

• During the development of Portable HackBytes, I decided to try encoding these
using both blob and line segment techniques to see which method was the most
optimal. Because a PAK file is not scanline oriented, it can be encoded in
segments, by lines, or as one big blob, with varying results for every file. The
most optimal method is used “automagically” for the final encoding.

• You will see this optimization method in the p2p code later in this document.
By comparison, the restriction of a Screen Size APF to 160 byte scanline
encoding often (not always) restricts compression. On the other hand,
sometimes repeats align on scanlines, so sometimes encoding as a blob
restricts compression (unless comparisons between the two are used).

• When I ran tests using alignment on 256 byte sectors and 512 byte blocks,
compression was almost always worse, but using segmentation based on
scanline boundaries and iteratively and repetively encoding and comparing
variable segments often really shaves-off the fat.

Comparative results between Apple’s PackBytes encoder and mine are shown later in this
document. More could likely be done with Portable HackBytes to reduce the size further
by additional segmentation options combined with more iterative techniques; p2p just
explores some of these.

5/7/2014 Portable HackBytes in C – a Case Study Page 12 of 64

Input/Output File Extension - PNT#C00002 - APF

APF is the most complicated of the output formats supported by the p2p program. It is
also the most extensible, since APF supports other sizes besides 320 x 200 and 640 x 200,
and supports mode320, mode640, and mode3200 in a single file format. Scanlines are
run-length encoded and no non-portable baggage like QuickDraw routines need to be
interpreted. It also allows for user-defined chunks called BLOCKs.

/* APF structures */
/* FileType - $C0 AuxType $0002 */
/* integers are in big endian (Motorola) Format */
typedef struct tagPNTPIC
{
 ulong Length; /* Block Length */
 uchar Kind[5]; /* 4 'M' 'A' 'I' 'N' */
 ushort MasterMode; /* 0 for mode320 and 0x80 for mode640 */
 ushort PixelsPerScanline; /* 320 or 640 */
 ushort NumColorTables; /* 16 */
 uchar ColorTable[16][32]; /* $0RGB table buffer */
 ushort NumScanLines; /* vertical resolution */
 ushort ScanLineDirectory[200][2];/* scbs */
} PNTPIC;
typedef struct tagPNTBROOKS
{
 ulong Length;
 uchar Kind[5]; /* 4 'M' 'A' 'I' 'N' */
 ushort MasterMode; /* 0 */
 ushort PixelsPerScanline; /* 320 */
 ushort NumColorTables; /* 1 */
 uchar ColorTable[1][32]; /* $0RGB table buffer */
 ushort NumScanLines; /* vertical resolution */
 ushort ScanLineDirectory[200][2];/* sequential scbs */
} PNTBROOKS;
typedef struct tagMULTIPAL
{
 ulong Length;
 uchar Kind[9]; /* 8 'M' 'U' 'L' 'T' 'I' 'P' 'A' 'L' */
 ushort NumColorTables; /* 200 */
 uchar ColorTableArray[200][32]; /* $0RGB table buffer */
 } MULTIPAL;

The APF consists of CHUNKS called BLOCKS. The MAIN Block in an APF contains
an entire mode320 or mode640 PIC file equivalent and in the case of a mode3200 Brooks
file equivalent, everything except for the 200 palettes is stored in MAIN.

An APF file can be used to store Image Fragments (Sprites) or screen-size and larger
SHR images. All the SHR scanlines stored in an APF are in PackBytes RLE format, but
the header information is not. However it uses Motorola Big-Endian which undoubtedly
would be better understood by more Windows Users than Mac Users today

5/7/2014 Portable HackBytes in C – a Case Study Page 13 of 64

While APF's PackBytes RLE is not as efficient as DreamGraphx LZW compression, APF
files are widely supported, including by DreamGraphx. (Proprietary DreamGraphx files
are not supported by the p2p program.)

APF’s store the position for the start of each scanline so that each scanline can be
unpacked separately. This allows an APF loader to support scrolling through an SHR
image larger than the screen. Memory is scarce on the Apple II, but because the APF
stores the start of each scanline, an APF loader can avoid the need for much memory by
seeking through a file to the start of a packed line, then reading and unpacking part of a
line directly to the SHR screen.

5/7/2014 Portable HackBytes in C – a Case Study Page 14 of 64

Input/Output File Extension – PA3#C00004 – Brooks Eagle/PackBytes

Apple II
File Type Notes

Technically Unsupported
File Type: $C0 (192)
Auxiliary Type: $0004

Full Name: Packed Apple IIgs Super Hi-Res 3200 Color Screen Image File
Short Name: Packed Super Hi-Res 3200 color image
Written by: Bill Buckels May 1, 2014

Files of this type and auxiliary type contain a packed Apple IIGS Super Hi-Res 3200
color screen image.

Files of type $C0 and auxiliary type $0004 contain a packed Apple IIGS Super Hi-Res
3200 color screen image, which is created by passing the entire file of type $C1 and
auxiliary type $0002 through the PackBytes routine.

If you restore a file of this type to its original size of 38400 bytes with UnPackBytes, you
can save the unpacked data to a file of type $C1 and auxiliary type $0002 (Apple IIGS
Super Hi-Res 3200 color screen image).

Files of type $C1 and auxiliary type $0002 are often referred to as "Brooks format" after
the designer of the format, John Brooks. The file structure is 32000 bytes of pixelData
followed by 200 Color Tables. Each color table is stored in reverse order; the color value
for color 15 is stored first.

The format for these files is similar to that for Super Hi-Res screen images except that
there are no Scan Line Control Bytes ("scb's") and these have 200 Color Tables instead of
16. "Brooks" files and their Color Tables need to be constantly loaded directly the screen
using a programming technique that is not easy; the programmer must constantly
synchronize Color Table exchange with the Apple IIgs Super Hi-Res display routine
intervals throughout the entire display duration, making these impractical for display
except in programs that are written efficiently and capable of sharing precise display
intervals with other functions.

Further Reference
• Apple II File Type Notes, File Type $C1, Auxiliary Type $0002

5/7/2014 Portable HackBytes in C – a Case Study Page 15 of 64

Additional SHR File Format Notes

The two variants of the SHR QuickDraw PICT file format are not supported. QuickDraw
II PICT files store pictures as a script; a series of command instructions (opcodes) which
are used to record the QuickDraw II commands that created the picture. Modeled after
PICT2 on the Macintosh, they can be used to exchange pictures between the IIgs and the
Mac. These are loaded by “playing-back” in a IIGs GUI program with the QuickDraw II
Toolbox Routine DrawPicture, but they are not bitmapped graphics files and they are not
portable by any definition that I would care to implement or support.

The Activision Paintworks Packed Super Hi-Res Picture File is not supported. This file is
targeted to the phantom users of Activision's PaintWorks Program (there likely aren’t
any), and contains header baggage reliant on QuickDraw in the form of QuickDraw II
Patterns in addition to Bitmapped Graphics Information so it is not portable. It is also not
as robust as the APF when it comes to sizes; only screen width is supported. Paintworks
Packed files can support full-paged documents but do not specify exactly how many
scanlines are on a page. Since the PaintWorks program itself does not provide proper
support for standard SHR graphics formats or support more than 16 colors as near as I
can tell, it is useless as a Paint Program, so there is no point in supporting PaintWorks.

The Apple II FileType notes can be referred to for additional details not included here or
elsewhere in this program's source code comments or additional documentation.

5/7/2014 Portable HackBytes in C – a Case Study Page 16 of 64

P2P – Pic to Pnt Portable HackBytes Example Program

P2P(C) Version 1.0 Copyright Bill Buckels 2014
All Rights Reserved.
Portable HackBytes(C) Copyright Bill Buckels 2014
All Rights Reserved.
UnPackBytes(c) Copyright (c) 2007, FaddenSoft, LLC
All rights reserved.
Raw format to Portable HackBytes Encoded format:
Default:
Usage: "p2p file.shr" or "p2p file.sh3"
Output: file.pnt
Option -p (Packed Screen)
 "p2p file.shr -p" or "p2p file.sh3 -p"
Output: file.pak or file.pa3
Option -u (UnPack)
PackBytes Encoded format to Raw format:
Usage: "p2p file.pnt -u" or "p2p file.pak -u"
Output: file.shr
 "p2p file.pnt -u" or "p2p file.pa3 -u"
Output: file.sh3
Option -t (CiderPress File Attribute Preservation Tags)
Option -s (-s1 to -s4 Singleton Thresholds)
Option -q disable HackQuads (for demo purposes only)
See Source Code and Documentation for More Information!

5/7/2014 Portable HackBytes in C – a Case Study Page 17 of 64

Program Organi z ation

Generally speaking p2p follows the program organization of any command-line
conversion utility written in the C programming language. Like most command line
utilities, p2p parses its inputs, outputs, and options before getting started.

After opening the input file in main(), p2p calls the ReformatSHR() function to read the
SHR input file. If the input file is a compressed file, UnPackBytes() is called to unpack
the file into a buffer. ReformatSHR() then writes the equivalent “raw” SHR output file;
either a PIC or a “Brooks” file.

But if the input file is a “raw” SHR file, based on file size alone, ReformatSHR() decides
whether the input file is a raw PIC file or a raw “Brooks” file and the appropriate proxy
function is called which then writes the compressed output file with Portable HackBytes
compression. The Proxy Functions that call HackBytes() are:

• PackApf();
• PackPic();
• PackBrooks();

This document does not aim to teach you how to write C programs. The implementation
of common functionality like reading files and allocating memory is well understood.
There are, however, some important details to do with the SHR file formats that can’t
necessarily be understood easily, so in this document, I am providing enough example
code from p2p to explain how all of this works.

The p2p source code should also be reviewed on its own for additional information.

A final word on the p2p program’s organization is “good manners”. Despite the fact that
it is a demo program and lives in the wild, p2p is fairly well behaved.

Memory allocation is dynamic in most cases and reasonably modest, but would likely
need to be refactored for use in a low memory environment. File I/O is extensive. Both
are checked for common errors and if p2p can’t safely run it likely won’t work at all. If a
file output error occurs the offending file will be closed and removed. Error messages are
provided so a reasonable amount of diagnostics can be done if common problems are
encountered.

P2p can also be easily modified to suit other nefarious purposes, and comes with many
comment lines and a DEBUG mode for those who are inclined to re-use portable code. A
single purpose or portable and redistributable SHR loader or editor can be relatively
easily written by stripping-out useless lines and adding display and editing routines.

5/7/2014 Portable HackBytes in C – a Case Study Page 18 of 64

The HackBytes() Function

This PackBytes encoder is really a simple list builder followed by a list processor.
Although the list processor for this function was written for PackBytes Run Length
Encoding (RLE), the list builder is a gutted version of the PCX encoder from the Z-Soft
technical reference for the PCX file format.

/* The Crux of the Biscuit */
int HackBytes(uchar *inbuff, ushort inlen, ushort SingletonThreshold)
{
 uchar this,last,msk;
 ushort runcount, repeats, singlerun, maxpack;
 ushort idx,jdx,i;
 unsigned RawCount=0,SingleCount=0,PackedCount=0,QuadCount=0;
 /* *** */
 /* ========== Build the List for this line ===== */
 /* *** */
 /* Build a list of count,value pairs */
 RawCount = 0;
 last = inbuff[0];
 runcount=1;
 for(idx=1;idx<inlen;idx++){
 this=inbuff[idx];
 if(this==last){
 runcount++;
 }
 else{
 if(runcount > 0){
 RawBuf[RawCount].CNT = runcount;
 RawBuf[RawCount].VAL = last;
 RawCount++;
 }
 last=this;
 runcount=1;
 }
 }
 /* stragglers */
 if(runcount > 0) {
 RawBuf[RawCount].CNT = runcount;
 RawBuf[RawCount].VAL = last;
 RawCount++;
 }

After initially reading a raw Super Hi-Res scanline into a sequential list of Count, Value
pairs, we have 2 types of nodes; single bytes and repeated bytes and we are now ready to
process the list and build a packed scanline.

5/7/2014 Portable HackBytes in C – a Case Study Page 19 of 64

The idea here is to accumulate Singletons in a separate queue, until we hit a repeat, then
flush the Singleton queue by encoding the Singletons first, followed by the repeat. At the
end of the list, if we have any Singletons left in the Singleton queue, we finally flush the
queue by encoding the remaining Straggletons

A Singleton can be a single group of bytes… a group of 1 to 4 bytes, although 2 bytes
seems to be optimal so the default setting is 2 bytes. The setting for this is called
“SingletonThreshold”. In the p2p program this is a command line option so you can
experiment with this and come to your own conclusion.
.
 /* *** */
 /* ====== Encode the List for this line ======== */
 /* *** */
 /* Process a list of count,value pairs */
 SingletonThreshold++;
 if (SingletonThreshold < 2 || SingletonThreshold > 5) {
 /* default - 1 and 2 bytes are encoded as Singletons */
 SingletonThreshold = 3;
 }
 PackedCount = SingleCount = 0;
 for (idx=0;idx<RawCount;) {
 runcount = RawBuf[idx].CNT;
 if (runcount == 0) {
 /* list nodes should never have a zero count */
 idx++;
 continue;
 }
 if (runcount < SingletonThreshold) {
 /* push singleton nodes onto the stack
 until we hit a repeat node */
 for (i=0;i<runcount;i++) {
 RawBuf[SingleCount].Singleton = RawBuf[idx].VAL;
 SingleCount++;
 }
 idx++;
 continue;
 }

During encoding of Singletons, two different methods of encoding are tested, and the
encoded Singletons are appended to the Packed Buffer using the most optimal:

Encoding Description Mask - Priority
00xxxxxx: (0-63) 1 to 64 bytes follow, all different 0x00 – 4
10xxxxxx: (0-63) 1 to 64 repeats of next 4 bytes (quad runs) 0x80 – 3

5/7/2014 Portable HackBytes in C – a Case Study Page 20 of 64

/* if we have hit a repeat list node... */
/* before encoding the repeat, pop singleton nodes (if any) off the
stack and encode 'em first */
/* two modes of encoding... Mask 0x80 and Mask 0x00 - decide which is
more efficient */
 while (SingleCount > 0) {
 /* *** */
 /* ========== Singleton Option 1 - Mask 0x80 === */
 /* *** */
 /* ========== Build a Quad Run of Singletons === */
 /* *** */
 singlerun = 0; /* needed later on */
 /* check for repeats of 4 byte patterns in Singletons */ QuadCount = HackQuads(SingleCount);
 if (QuadCount == 0) break;
/* the following calculates the raw encoding for a run of singletons */
/* we don't need to actually run singleton option 2 to get a line
length for comparison because that's pretty well defined */
 maxpack = (ushort)(SingleCount/64);
 if ((SingleCount % 64) != 0) maxpack++;
 maxpack+=SingleCount;
/* if no efficiency gain, just encode as raw singletons */
/* it could very well be that at the end of encoding the line that the
entire line gets replaced with a singleton run depending on how
expanded the encoded line becomes */
 if (QuadCount > maxpack) break;
/* otherwise append encoded 4 byte patterns to the packed line */
 memcpy(&PackedBuf[PackedCount],&PackedBuf4[0],QuadCount);
 /* Advance the count and pop the Singleton Stack */
 PackedCount += QuadCount;
 SingleCount = 0;
 break;
 }

In the code above you can see that the HackQuads() helper function is called to build a
temporary packed buffer of Singletons primarily using Quad runs (repeats of 4 different
bytes). Since there is no simple formula for the efficiency of Quad runs, we must run the
Quad run encoder for comparison so while we are at it, we build the temporary buffer
each time through. If encoding of Singletons using Quad runs is more efficient than
encoding of Singletons as a chunk of encoded single bytes then the temporary buffer is
appended to the packed buffer and the Singleton Queue is flushed before encoding the
impending Repeat Node. Otherwise, if no efficiency can be gained using Quad runs, a
chunk of single bytes is encoded:

5/7/2014 Portable HackBytes in C – a Case Study Page 21 of 64

 while (SingleCount > 0) {
 /* *** */
 /* ========== Singleton Option 2 - Mask 0x00 === */
 /* *** */
 /* ========== Build a Raw Run of Singletons ==== */
 /* *** */
 if (SingleCount < 65) {
 msk = (uchar)(SingleCount - 1);
 PackedBuf[PackedCount] = msk;
 PackedCount++;
 for (i=0;i<SingleCount;i++) {
 PackedBuf[PackedCount] = RawBuf[singlerun].Singleton;
 singlerun++;
 PackedCount++;
 }
 SingleCount = 0;
 break;
 }
 PackedBuf[PackedCount] = (uchar)63;
 PackedCount++;
 for (i=0;i<64;i++) {
 PackedBuf[PackedCount] = RawBuf[singlerun].Singleton;
 singlerun++;
 PackedCount++;
 }
 SingleCount -= 64;
 }

Now that the Singleton nodes have been encoded and the Singleton Queue is empty we
follow a formula to encode the repeats. This is quite a complicated formula more easily
explained in code but requires some knowledge of the efficiency of PackBytes encoding
to understand.

Encoding Description Mask – Priority
01xxxxxx: (0-63) 1 to 64 repeats of next byte 0x40 - 2
11xxxxxx: (0-63) 1 to 64 repeats of next byte taken as 4 bytes 0xc0 - 1

For runs of 256 or more repeated bytes the most efficient option is a second type of Quad
only 2 bytes long called a Quad Count Repeat. Since a normal Single Count Repeat can
only encode up to 64 repeated bytes into 2 bytes, Quad Count Repeats are used in
HackBytes() whenever it is possible to gain efficiency.

For runs of 2 to 64 repeated bytes, a normal Single Count Repeat is 100% efficient.

For runs of 65 to 255 repeated bytes, either 2 or 4 encoded bytes are 100% efficient.
Quad Count Repeats are used to encode the portion of the repeat that is equally divisible
by 4, and Straggletons of 2 and 3 bytes, if any, encode in 2 bytes. Straggletons of 1 byte
are left raw and pushed into the Singleton Queue and wait for more Singletons.

5/7/2014 Portable HackBytes in C – a Case Study Page 22 of 64

 /* Hi-Low Split */
 /* *** */
 /* ========== Quad Count Repeats Mask 0xc0 ===== */
 /* *** */
 /* ========== Build Full Runs of Repeated Pairs */
 /* *** */
 /* Mask 0xc0 - use full quads to reduce repeats */
 while (runcount > 256) {
 PackedBuf[PackedCount] = 0xff; /* 63 | 0xc0 */
 PackedCount++;
 PackedBuf[PackedCount] = RawBuf[idx].VAL;
 PackedCount++;
 runcount-= 256; /* decrement runcount until 256 or below */
 }
/* 1 byte runs are a loss at the end of any repeat run...
PUSH 1 BYTE onto the singleton stack and give it a second chance */
 if (runcount < 2) {
 if (runcount == 1) {
 /* push singletons on the stack */
 RawBuf[SingleCount].Singleton = RawBuf[idx].VAL;
 SingleCount++;
 }
 idx++;
 continue;
 }
 /* *** */
 /* ========== Single Count Repeats Mask 0x40 === */
 /* *** */
 /* ========== Build Low Runs of Repeated Pairs */
 /* *** */
 /* Mask 0x40 for repeats of 2 to 64 */
 if (runcount < 65) {
 msk = (uchar)(runcount - 1);
 PackedBuf[PackedCount] = (uchar) (msk | 0x40);
 PackedCount++;
 PackedBuf[PackedCount] = RawBuf[idx].VAL;
 PackedCount++;
 idx++;
 continue;
 }
 /* End of High-Low Split */
 /* *** */
 /* ========== Quad Count Repeats Mask 0xc0 ===== */
 /* *** */
 /* ========== Build Low Runs of Quad Pairs ===== */
 /* *** */
 /* Mask 0xc0 - use quads for repeats of 65 to 255 */
 repeats = runcount / 4;

5/7/2014 Portable HackBytes in C – a Case Study Page 23 of 64

 msk = (uchar) (repeats - 1);
 PackedBuf[PackedCount] = (uchar) (msk | 0xc0);
 PackedCount++;
 PackedBuf[PackedCount] = RawBuf[idx].VAL;
 PackedCount++;
 runcount -= (repeats * 4);
 /* a 1 byte run is a loss */
 if (runcount < 2) {
 if (runcount == 1) {
 /* push straggletons on the stack */
 RawBuf[SingleCount].Singleton = RawBuf[idx].VAL;
 SingleCount++;
 }
 idx++;
 continue;
 }
 /* *** */
 /* ========== Straggler Repeats Mask 0x40 ====== */
 /* *** */
 /* ========== Build Quad Overflow Trailer ====== */
 /* *** */
 /* Mask 0x40 for stragglers - repeats of 2 or 3 */
 /* this breaks even or gains a byte in efficiency */
 msk = (uchar)(runcount - 1);
 PackedBuf[PackedCount] = (uchar) (msk | 0x40);
 PackedCount++;
 PackedBuf[PackedCount] = RawBuf[idx].VAL;
 PackedCount++;
 /* on to the next list member */
 idx++;
 }

The line is now entirely packed except for Singletons if any, so these Straggletons need to
be appended to the packed line before returning the packed line and the packed length to
the caller. The following code duplicates the code in the main processing loop above;
first Singleton Quads are tried, and compared to Singleton Chunk encoding and the most
efficient segment is appended to the packed line:

 /* clear straggletons */
 /* two modes of encoding... Mask 0x80 and Mask 0x00 -
 decide which is more efficient */
 while (SingleCount > 0) {
 /* *** */
 /* ========== Build a Quad Run of Straggletons */
 /* *** */
 singlerun = 0; /* needed later on */
 /* check for repeats of 4 byte patterns in Singletons */
 QuadCount = HackQuads(SingleCount);

5/7/2014 Portable HackBytes in C – a Case Study Page 24 of 64

 if (QuadCount == 0) break;
/* the following calculates the encoding for a run of singletons */
 maxpack = (ushort)(SingleCount/64);
 if ((SingleCount % 64) != 0) maxpack++;
 maxpack+=SingleCount;
 /* if no efficiency gain, just encode as singletons */
 if (QuadCount > maxpack) break;
/* otherwise append encoded 4 byte patterns to the packed line */
 memcpy(&PackedBuf[PackedCount],&PackedBuf4[0],QuadCount);
 /* Advance the count and pop the Singleton Stack */
 PackedCount += QuadCount;
 SingleCount = 0;
 break;
 }
 while (SingleCount > 0) {
 /* *** */
 /* ========== Build a Raw Run of Straggletons */
 /* *** */
/* pop any remaining singleton nodes off the stack and finish-up */
 if (SingleCount < 65) {
 msk = (uchar)(SingleCount - 1);
 PackedBuf[PackedCount] = msk;
 PackedCount++;
 for (i=0;i<SingleCount;i++) {
 PackedBuf[PackedCount] = RawBuf[singlerun].Singleton;
 singlerun++;
 PackedCount++;
 }
 SingleCount = 0;
 break;
 }
 PackedBuf[PackedCount] = (uchar)63;
 PackedCount++;
 for (i=0;i<64;i++) {
 PackedBuf[PackedCount] = RawBuf[singlerun].Singleton;
 singlerun++;
 PackedCount++;
 }
 SingleCount -= 64;
 }

Now that we are done encoding the line, we know how many bytes it packed to. If the
encoded line expanded beyond the length of a raw chunk of encoded Singletons, we just
encode it as a Raw Chunk of Singletons. For a production version we would likely also
want to test for an efficiency gain using Singleton Quads alone under some
circumstances, especially on shorter lines. I could get into a protracted discussion about
when that would be better and when that would be much worse, but in the interests of

5/7/2014 Portable HackBytes in C – a Case Study Page 25 of 64

keeping this simple, the Raw Chunk of Singletons is the last optimization I have
implemented for this version.

Additional optimizations are also performed within the p2p program itself which will be
discussed briefly later on.

 /* *** */
 /* ========== Build a Raw Line of Singletons === */
 /* *** */
/* a raw line of singletons incurs 1 count byte for every 64 data bytes
*/
/* a line of 160 singletons is expanded by 3 count bytes to 163 bytes */
/* if the packed line expands beyond this length then simply encode it
as singletons */
/* the following calculates the most efficient encoding for a line of
singletons */
 maxpack = (ushort)(inlen/64);
 if ((inlen % 64) != 0) maxpack++;
 maxpack+=inlen;
/* if the length of a packed line goes beyond this, run individual
bytes */
 if (PackedCount > maxpack) {
 PackedCount = RawCount = 0;
 maxpack = (ushort) (inlen / 64);
 for (idx = 0;idx < maxpack; idx++) {
 /* runs of 64 individual bytes */
 PackedBuf[PackedCount] = 63; PackedCount++;
 for (jdx = 0; jdx < 64; jdx++, RawCount++, PackedCount++) {
 PackedBuf[PackedCount] = inbuff[RawCount];
 }
 }
 inlen -= (maxpack*64);
 if (inlen > 0) {
 /* stragglers if any */
 PackedBuf[PackedCount] = (uchar)(inlen-1); PackedCount++;
 for (jdx = 0; jdx < inlen; jdx++, RawCount++, PackedCount++)
 {
 PackedBuf[PackedCount] = inbuff[RawCount];
 }
 }
 } /* end of raw chunk */
 /* in either case return length of packed buffer */
 return PackedCount;
}

5/7/2014 Portable HackBytes in C – a Case Study Page 26 of 64

HackQuads and the Mid-Stream Encoder

The HackQuads() Mid-Stream Encoder encodes repeated runs of 4 byte Words (Quad
Singletons):

Encoding Singletons Mask
10xxxxxx: (0-63) 1 to 64 repeats of next 4 bytes (quad runs) 0x80

“Classic” run length encoding schemes are somewhat simpler than PackBytes encoding
but the idea is still the same; encode Singletons and Repeats separately.

I really hope you haven’t been reading this document up until now in horror and
bewilderment, already abandoning all hope thinking black magic is afoot here! The only
thing afoot here is common sense.

Anything you read on PackBytes would probably lead you to believe that 4 different
StereoTypes of mutually exclusive encoding exist. If you do think in StereoTypes and
sets and aggregates, common sense says HackBytes actually has only two types of
encoding (not 4):

5/7/2014 Portable HackBytes in C – a Case Study Page 27 of 64

HackBytes

Singleton Runs Repeat Runs

Singleton Runs Repeat Runs 2-64 Bytes
Mask 0x40

Words
Mask 0xc0

Words
Mask 0x80

Bytes
Mask 0x00

1 Byte Straggleton
Mask 0x00 or 0x80

2 or 3 Byte
Straggletons
Mask 0x40

1 Byte Straggleton
Mask 0x00 or 0x801-3 Byte Straggletons

Mask 0x00

HackBytes and the Main Stream Encoder

Encoding Singletons Mask
00xxxxxx: (0-63) 1 to 64 bytes follow, all different 0x00

Repeats
01xxxxxx: (0-63) 1 to 64 repeats of next byte 0x40
11xxxxxx: (0-63) 1 to 64 repeats of next byte taken as 4 bytes 0xc0

During the initial development I organized HackBytes() like a “Classic” encoder by
using a list processor and only 3 of the 4 PackBytes RLE encoding schemes. These 3
encoding schemes (above) functioned well enough together and included all but two of
the current optimizations. The 2 missing optimizations were:

1. SingletonThreshold
2. HackQuads() Mid-Stream Encoder

Without the 2 missing optimizations Portable HackBytes() was less efficient than Apple
Computer’s PackBytes. The 19 files that were used for my initial comparison test are the
same 19 files that are used in my final comparison test shown at the end of this document.

After adding these 2 missing optimizations, Portable HackBytes() was more efficient than
Apple Computer’s PackBytes.

You can turn-off each of the 2 missing optimizations to compare the difference for
yourself by using the p2p program’s command options –s1 and –q.

All of the optimizations used in Portable HackBytes() and the p2p demo program appear
throughout this document and are also listed in the Optimizations Table shown below.

5/7/2014 Portable HackBytes in C – a Case Study Page 28 of 64

Portable HackBytes() Optimizations Table

The following is a table of all the optimizations in Portable HackBytes and the p2p
program:

Optimizations Description
Separate Repeats from
Singletons

Pre-Process Raw Chunk into sequential list separating
Repeats from Single Bytes
Leave Raw Buffer intact for Raw Run Optimization

Encode from List Process the sequential list instead of using the raw chunk
Save the raw chunk for Raw Run Comparison
Provide a sequential Singleton Stack for single runs
Provide a temporary encoded buffer for HackQuads()

SingletonThreshold Allow Singleton Stack to store runs of 1 to 4 bytes
Use the optimal default of 2 bytes
Allow a Command Line over-ride of 1 to 4 bytes
Do not use this setting for Straggletons in Repeats

Singletons Push Singletons onto Singleton Stack until a Repeat
Pop Singleton Stack and Encode before Encoding Repeat
Pop Straggletons and Encode at the end of the run

HackQuads()
Mid-Stream Encoder

Compare Encoding runs of Single Bytes to Quad runs
Encode Quad run first and precalculate Single run.
If Quad run is smaller use instead of Single run
Allow this option to be disabled from the Command Line

Repeats (hi-lo split) Encode Repeats Greater than 256 using Mask 0xc0
Encode Repeats Greater than 64 using Mask 0xc0
Encode Repeats of 2 to 64 using Mask 0x40
Encode Straggletons of 2 and 3 using Mask 0x40
Push Straggletons of 1 onto Singleton Stack

Raw Run Compare efficiency of encoded line to worst case Singleton
Use raw run encoded as Singletons if it is smaller

Separate Scan Lines
From ColorTables and
From scbs

Encode ColorTables and ScanLine Control bytes as
Separate Chunks for Maximum Repeat Alignment for
Eagle/PackBytes File Output

Eagle/PackBytes
Dry Run Encoding
4 – line encoded chunks

Encode and Compare Efficiency
1,2 or 4 line segments + scb + palette
Write most efficient to file.

Eagle/PackBytes
Wet Run Encoding
File size encoded chunk

Encode and Compare Efficiency against 4 – line chunks
Dry Run Encoding of Entire File
If more efficient, overwrite 4 – line chunk encoded file

Two of the above optimizations, Dry-Run Encoding and Wet-Run Encoding, apply only
to Eagle/PackBytes PAK and PA3 file output. Because APF files only encode individual
scanlines, chunks larger than a scanline cannot be used, so this optimization does not
apply to them.

5/7/2014 Portable HackBytes in C – a Case Study Page 29 of 64

“Raw Run” optimization was initially targeted at APF files of 160 byte scanlines which
have a maximum encoded raw length of 163 bytes. Some other analysis I have seen on
PackBytes also refers to this efficiency of expanded scanlines. “Raw Run” optimization
works best with shorter runs. When used with longer runs it can’t take advantage of
repeats within the run, so Dry-Run encoding based on line-length segments will likely
benefit, and the HackQuads() optimization for mid-stream encoding of Singletons is a
short run variation of “Raw Run”, but if it works with Wet-Run encoding, the encoded
file was better left as a raw unpacked file.

Dry-Run encoding works better with scan-lines than it does with 256 byte sectors or 512
byte blocks because the 2 dimensional geometry of an image generally aligns on scan-
line boundaries. To make this more efficient for long repeats, since 256 byte runs are
optimal for Quad Count Repeats in the PackBytes RLE, I have segmented this
optimization into 50 segments which are equally divisible by 128 but optimally divisible
by 256 using a factor of 2.5 which produces an error of 50% and a threshold of 20%. This
was “fine-tuned” from a 1280 byte segment of 8 lines which produced larger encoded
results than a 640 byte segment of 4 lines. There seems to be an optimal frequency for
segments of 4 lines. Beyond that, encoding the entire scanline area of the file seems to
work better than encoding 8 line segments.

The “Singleton Threshold” optimization with a default of 2 bytes works on its own, and
works even better with the HackQuads() Mid-Stream encoder optimization. Repeated 4
byte runs can hide in Singletons and byte pairs. For greater efficiency, byte pairs needed
to be included in Singletons and a Mid-Stream Encoder was needed to sort through
Singletons and look-ahead for Quad runs. When Quad runs are found Mid-Stream, the
encoded runs for that segment are compared against an encoded “Raw Run” of only part
of the chunk to see which method produces a more efficient smaller Packed Run. Using a
“Singleton Threshold” of 1 byte, or 3 or 4 bytes creates larger results than 2 bytes. Using
HackQuads() optimization creates smaller results than with HackQuads() disabled.

One of the reasons that “Singleton Threshold” works best with 2 bytes is how repeated
runs of “pure” color tend to fall together with 4 byte repeats like in a dithered image. A
run of pure color seems to generally be over 2 bytes. A dither seems to be 2 bytes or even
1 byte, but trailing repeats of 2 bytes do not seem to encode as efficiently as trailing
repeats of 1 byte so “Singleton Threshold” is not applied to Straggletons.

My observations are of course by no means speculative, which is precisely why I have
provided a relatively complete HackBytes implementation in the p2p program so you can
try the darned thing yourself. It was certainly easier to provide something usable and
expandable, than to waste everyone’s time collating the seemingly endless data sets and
probability theories that led to this, but that nobody wants to read anyway, and now lay
abandoned on my hard-drive along with about 30 years of other caka. As for my
optimizations; like everything else in HackBytes, they are just common sense, and better.

5/7/2014 Portable HackBytes in C – a Case Study Page 30 of 64

The HackQuads() Function

The HackQuads() function builds a run of Singletons into a temporary Quad Encoded
line section as a candidate for efficiency comparison. If the Quad encoded line is more
efficient than the equivalent “raw” encoded line it is used instead. The HackQuads()
function called by HackBytes() is merely a wrapper for the PackQuads() Mid-Stream
Encoder. You should recognize this encoder… it works the same way as the list builder
for HackBytes() except that it compares 4 bytes at a time for repeats instead of one:

/* Helper Function called By HackQuads() */
unsigned PackQuads(uchar *inbuff, unsigned NumQuads, uchar *outbuff)
{
 unsigned runcount, x, idx, PackedCount = 0;
 uchar msk, this[4], last[4];
 /* *** */
 /* ========== RLE for Quad Runs in Singletons == */
 /* *** */
 memcpy((uchar *)&last[0],(uchar*)&inbuff[0],4);
 runcount = 1;
 /* When I tried shifting the line using a more complicated
segmented algorithm, the savings were at best only a few bytes on some
images and none at all on others. It really wasn't worth the extra
overhead, so I decided to use classic run-length encoding below for the
sake of readability. */

5/7/2014 Portable HackBytes in C – a Case Study Page 31 of 64

 for (x = 1, idx = 4; x < NumQuads; x++, idx+=4) {
 memcpy((uchar *)&this[0],(uchar *)&inbuff[idx],4);
 if (memcmp(&this[0],&last[0],4) == 0) {
 runcount++;
 if (runcount == 64) {
 msk = (uchar) (runcount - 1);
 outbuff[PackedCount] = (uchar) (msk | 0x80);
 PackedCount++;
 memcpy((uchar*)&outbuff[PackedCount],(uchar *)&this[0],4);
 PackedCount+=4;
 runcount = 0;
 }
 }
 else {
 if (runcount > 0) {
 msk = (uchar) (runcount - 1);
 outbuff[PackedCount] = (uchar) (msk | 0x80);
 PackedCount++;
 memcpy((uchar *)&outbuff[PackedCount],(uchar *)&last[0],4);
 PackedCount+=4;
 }
 memcpy((uchar *)&last[0],(uchar *)&this[0],4);
 runcount = 1;
 }
 }
 /* straggler Quads */
 /* straggler singletons are appended to the line
 after returning to HackQuads() */
 if(runcount > 0) {
 msk = (uchar) (runcount - 1);
 outbuff[PackedCount] = (uchar) (msk | 0x80);
 PackedCount++;
 memcpy((uchar *)&outbuff[PackedCount],(uchar *)&this[0],4);
 PackedCount+=4;
 }
 return PackedCount;
}

Here’s the wrapper for the above encoder. It’s not merely a wrapper. It encodes stragglers
as single byte runs. Since this precedes a conventional repeat of a single byte, it must be
de-queued now!

/* Helper Function called By HackBytes */
/* Singletons Only - Repeated Patterns of 4 Bytes - Mask 0x80 */
unsigned HackQuads(unsigned SingleCount)
{
 unsigned singlerun, NumQuads, remaining, runcount, PackedCount = 0;
 uchar msk;
 if (disable_HackQuads == 1) return 0; /* for demo purposes */
 /* if flag is not set, no memory is allocated so just return */
 if (Pack4Singletons == INVALID) return 0;

5/7/2014 Portable HackBytes in C – a Case Study Page 32 of 64

/* in order for a repeat of 4 to occur we need a minimum of 8 bytes */
 NumQuads = SingleCount / 4;
 if (NumQuads < 2) return 0;
 /* expand bytes into look-ahead mini-buffer */
 /* singlerun starts at base 0 */
 for (singlerun = 0; singlerun < SingleCount; singlerun++) {
 RawBuf4[singlerun] = RawBuf[singlerun].Singleton;
 }
 /* RLE for Quad pattern runs */
 singlerun = (NumQuads * 4);
 remaining = SingleCount - singlerun;
 /* shifted segment optimization here makes little difference */
 /* see notes in PackQuads (above) */
 /* however this is an interesting area of the code to play with */
 /* I have left a "ping" test in place below left over from my last
test code before the production version of this function for possible
future drill-down to try some pattern matching stuff here... but I
thought I'd better keep it simple for the first release. */
PackedCount =
PackQuads((uchar *)&RawBuf4[0], NumQuads, (uchar *)&PackedBuf4[0]);
 /* Straggletons - encode as a single run of 1-3 bytes */
 if (remaining > 0) {
 msk = (uchar) (remaining - 1);
 PackedBuf4[PackedCount] = msk;
 PackedCount++;
 memcpy((uchar *)&PackedBuf4[PackedCount],
 (uchar *)&RawBuf4[singlerun],remaining);
 PackedCount+=remaining;
 }
#ifdef DEBUG
 /* if you are mucking about with PackQuads set DEBUG and
 redirect to a file for clues */
 if (UnPackBytes((uchar *)&UnPackBuf4[0],
 (uchar *)&PackedBuf4[0],(long)
 SingleCount,(long) PackedCount)!=0) {
 puts("PackBytes Quad Error!");
 return 0;
 }
 if (memcmp((uchar *)&RawBuf4[0],
 (uchar *)&UnPackBuf4[0],SingleCount) != 0) {
 puts("Compare Quad Error!");
 return 0;
 }
#endif
 return PackedCount;
}

5/7/2014 Portable HackBytes in C – a Case Study Page 33 of 64

Encoding 256 Color PAK Files with “Dry-Runs” and “Wet-Runs”

Since the Eagle/PackBytes file format is a “blob” that is packed end to end using
PackBytes, it dawned on me that unlike the APF format, I had no restrictions to encode
on a line by line basis but I had no requirement to just blindly encode the entire file in a
big chunk. So I did both, and compared the two, and provide the most efficient file:

int PackPic()
{
FILE *fp;
ushort len, linelen, offset, inset, x, y, singlelen, doublelen, seglen,
segments, packet;
int status = FAILURE;
if (PackAlloc(32768) == INVALID) return status;
fp = fopen(pntfile,"wb");
if (NULL == fp) {
PackFree();
printf("Unable to open %s for output!\nExiting...\n",pntfile);
return status;
}
status = SUCCESS;
/* encoding by 1,2 or 4 line segments + scb + palette */
linelen = 0;
for (y = 0, offset = 0; y<50; y++,offset+=640) {
/* 4 segments of 1 line */
for (x = 0, inset = offset, singlelen = 0; x < 4; x++, inset+=160) {
 singlelen += HackBytes((uchar *)&shrbuf[inset],
(ushort)160,use_threshold);
}
/* 2 segments of 2 lines */
for (x = 0, inset = offset, doublelen = 0; x < 2; x++, inset+=320) {
 doublelen += HackBytes((uchar *)&shrbuf[inset],
(ushort)320,use_threshold);
}
/* 1 segment of 4 lines */
seglen = len = HackBytes((uchar *)&shrbuf[offset],640,use_threshold);
segments = 1;
if (doublelen < seglen) {
 seglen = doublelen;
 segments = 2;
}
if (singlelen < seglen) segments = 4;
packet = (ushort) 640 / segments;

5/7/2014 Portable HackBytes in C – a Case Study Page 34 of 64

for (x = 0, seglen = 0, inset = offset; x < segments; x++,
inset+=packet) {
 if (segments > 1) {

len = HackBytes((uchar *)&shrbuf[inset],packet,use_threshold);
 }
 seglen += len;
 fwrite((uchar *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
 if (ferror(fp)) {

status = INVALID;
break;

 }
}
if (status == INVALID) break;
linelen += seglen;
}

The code above segments 4 scanlines of an SHR image into a segment for encoding. It
compares the efficiency of encoding each scanline separately, and in pairs, with the
efficiency of encoding all 4 scanlines together. The most efficient method is then used to
encode the 4 line segment. By using scanline boundaries the two dimensional image
geometry is aligned which generally yields better compression results than using sector or
block boundaries. The 640 byte segment size is a compromise between the sector
alignment efficiency of PackBytes and the geometric screen width efficiency of 160 bytes
for graphics object and primitives, and 2 dimensional image alignment.

Again, this can be optimized much further by using a larger segment and many more
comparisons, but since this already yields better results than Apple Computer’s
PackBytes and is still quite readable, I have done no further optimization for this release.

if (status == SUCCESS) {
for (offset = 32000;;) {
 len = HackBytes((char *)&shrbuf[offset],256,use_threshold);
 fwrite((uchar *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
 if (ferror(fp)) {

status = INVALID; break;
 }
 linelen += len;
 offset +=256;
 len = HackBytes((uchar *)&shrbuf[offset],512,use_threshold);
 fwrite((uchar *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
 if (ferror(fp)) {

status = INVALID;
break;

 }
 linelen+=len;
 break;
}
}
fclose(fp);

5/7/2014 Portable HackBytes in C – a Case Study Page 35 of 64

The code above uses the boundaries of the scb’s and the ColorTables in an SHR image to
attempt an efficiency gain. Unused palettes in the ColorTable will compress well, and
scb’s that all use the same palette will also compress well. Otherwise, the only potential
for efficiency gain is the 56 bytes of padding at the end of the scb block, and whatever
other random repeats may occur.

The code above has compressed an SHR file to an Eagle/PackBytes format file using
segmented optimization. But more efficiency may be gained by simply encoding the
entire file as a single PackBytes “blob”:

while (status == SUCCESS) {
printf("RLE by line segments = %u\n",linelen);
/* if encoding the entire file into a single blob results in a
 smaller size than segmented encoding by scanline boundaries
 then overwrite the segmented file with with an encoded blob */
len = HackBytes((uchar *)&shrbuf[0],(ushort)32768,use_threshold);
printf("RLE by file = %u\n",len);
if (len < linelen) {
 fp = fopen(pntfile,"wb");
 /* if we can't open the file at this stage of the game
 then just leave it alone... must be an access problem */
 if (NULL == fp) {

puts("Segmented Encoding Used!");
 }
 else {

fwrite((uchar *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
if (ferror(fp)) status = INVALID;
else puts("File Encoding Used!");
fclose(fp);

 }
}
else {
 puts("Segmented Encoding Used!");
}
break;
}
if (status == SUCCESS) printf("Created: %s\n",pntfile);
else printf("Can't Create %s!\nOutput File Write Error!
Exiting...\n",pntfile);
PackFree();
return status;
}

Encoding 3200 Color Brooks PAK Files

A Brooks file is encoded to Eagle/PackBytes using roughly the same technique as the 256
Color SHR file shown on the preceding code:

5/7/2014 Portable HackBytes in C – a Case Study Page 36 of 64

int PackBrooks()
{
FILE *fp;
ushort len, linelen, offset, inset, x, y, singlelen, doublelen, seglen,
segments, packet;
int status = FAILURE;
if (PackAlloc(32000) == INVALID) return status;
fp = fopen(pntfile,"wb");
if (NULL == fp) {
PackFree();
printf("Unable to open %s for output!\nExiting...\n",pntfile);
return status;
}
status = SUCCESS;
/* encoding by 1,2 or 4 line segments + scb + palette */
linelen = 0;
for (y = 0, offset = 0; y<50; y++,offset+=640) {
/* 4 segments of 1 line */
for (x = 0, inset = offset, singlelen = 0; x < 4; x++, inset+=160) {
singlelen +=
HackBytes((uchar *)&shrbuf[inset],(ushort)160,use_threshold);
}
/* 2 segments of 2 lines */
for (x = 0, inset = offset, doublelen = 0; x < 2; x++, inset+=320) {
doublelen += HackBytes((uchar*)&shrbuf[inset],
(ushort)320,use_threshold);
}
/* 1 segment of 4 lines */
seglen = len = HackBytes((uchar *)&shrbuf[offset],640,use_threshold);
segments = 1;
if (doublelen < seglen) {
 seglen = doublelen;
 segments = 2;
}
if (singlelen < seglen) segments = 4;
packet = (ushort) 640 / segments;
for (x = 0, seglen = 0, inset = offset; x < segments; x++,
inset+=packet) {
 if (segments > 1) {

len = HackBytes((uchar *)&shrbuf[inset],packet,use_threshold);
 }
 seglen += len;
 fwrite((uchar *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
 if (ferror(fp)) {

status = INVALID; break;
 }
}
if (status == INVALID) break;
linelen += seglen;
}

5/7/2014 Portable HackBytes in C – a Case Study Page 37 of 64

if (status == SUCCESS) {
/* this could probably be optimized somewhat more but at this point I
am not sure how much use anyone would have for a Brooks file in PAK
format so just getting this off my plate for now */
offset = len = HackBytes((char*)&shrbuf[32000],
(ushort)6400,use_threshold);
fwrite((uchar *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
if (ferror(fp)) status = INVALID;
else linelen += len;
}
fclose(fp);
while (status == SUCCESS) {
printf("RLE by line segments = %u\n",linelen);
/* if encoding the entire file into a single blob results in a
 smaller size than segmented encoding by scanline boundaries
 then overwrite the segmented file with with an encoded blob */
len = HackBytes((uchar *)&shrbuf[0],(ushort)32000,use_threshold);
offset += len;
printf("RLE by file = %u\n",offset);
if (offset < linelen) {
 for (;;) {

fp = fopen(pntfile,"wb");
/* if we can't open the file at this stage of the game
 then just leave it alone... must be an access problem */
if (NULL == fp) {
 puts("Segmented Encoding Used!"); break;
}
fwrite((uchar *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
if (ferror(fp)) {
 fclose(fp); status = INVALID; break;
}
len = HackBytes((char *)&shrbuf[32000],

 (ushort)6400,use_threshold);
fwrite((uchar *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
if (ferror(fp)) {
 fclose(fp); status = INVALID; break;
}
puts("File Encoding Used!"); fclose(fp); break;

 }
}
else { puts("Segmented Encoding Used!"); }
break;
}
if (status == SUCCESS) printf("Created: %s\n",pntfile);
else printf("Can't Create %s!\nOutput File Write Error!
Exiting...\n",pntfile);
PackFree();
return status;
}

5/7/2014 Portable HackBytes in C – a Case Study Page 38 of 64

Encoding APF Files

APF files are required to unpack on scan-line boundaries, and their headers must remain
uncompressed. This results in an unacceptable compression loss when compared to a
PAK file of an SHR screen and in many cases a “raw” SHR screen file. Like any other
SHR file, you need to put some thought into what you will be using these for.

You are unlikely to be concerned with seriously using APF files as a file interchange
format except for nostalgic reasons so creating an APF file in this day and age is just for
fun. For slideshows a “raw” SHR file is easiest to deal with. And LZ4 has every other
compression format beat for overall efficiency for Apple IIgs games programming.

The APF header requires significant interpretation which, when combined with the
inherent potential for efficiency loss of restricting encoding to line boundaries, makes its
use even more impractical unless for describing and storing images of a different size
than the SHR screen or for applications which can’t deal with other SHR formats or for
reasons of personal preference or insanity.

Unless you interpret the APF file header, you can’t tell whether the APF is a mode640 or
a mode320 or a mode3200 APF file. For completely device dependent screen size SHR
files you don’t care about this.

Since we are encoding rather than decoding that isn’t an issue here. We already know
what we are converting based on our input file. But organizing a “raw” device dependent
file like an SHR file into some contraption like the APF that compromises the efficiency
of PackBytes compression with a large interpreted header violates the primary purpose of
Run-Length encoding (RLE) which is to store efficiently and unpack quickly. All other
RLE formats that I can think of (except for Eagle/PackBytes) have the same problem,
including Windows BMP’s.

So in most cases the following encoder which produces an APF file from a “raw” SHR
file is simply a demo with a recipe for something practical rather than anything useful.

int PackApf()
{
FILE *fp;
ulong blocklen = 0L;
ushort len, y;
uchar ch;
int status = INVALID;
if (PntAlloc() == INVALID) return FAILURE;
fp = fopen(pntfile,"wb+");
if (NULL == fp) { PntFree();
 printf("Unable to open %s for output!\nExiting...\n",pntfile);
 return FAILURE;
}

5/7/2014 Portable HackBytes in C – a Case Study Page 39 of 64

switch(input_format) {
case BROOKS_FMT: brooks = (BROOKSFILE *)&shrbuf[0];
 SetUpBrooksPalette();
 fwrite((char*)&brooksMain[0].Length,sizeof(PNTBROOKS),1,fp);
 if (ferror(fp)) break; blocklen = (ulong)sizeof(PNTBROOKS);
 for (y=0;y<200;y++) {

len =
HackBytes((uchar *)&brooks[0].line[y][0],160,use_threshold);
fwrite((char *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
if (ferror(fp)) { status = FAILURE; break; }
brooksMain[0].ScanLineDirectory[y][0] = Motorola16(len);
brooksMain[0].ScanLineDirectory[y][1] = Motorola16(y);
blocklen += len;

 }
 if (status == FAILURE) { status = INVALID; break; }
 fwrite((char*)&MultiPal[0].Length,sizeof(MULTIPAL),1,fp);
 if (ferror(fp)) break; rewind(fp);
 brooksMain[0].Length = Motorola32(blocklen);
 fwrite(&brooksMain[0].Length,sizeof(PNTBROOKS),1,fp);
 if (ferror(fp)) break;
 status = SUCCESS; break;
case PIC_FMT:
default: pic = (PICFILE *)&shrbuf[0];
/* check first scb and use for MasterMode - as good as anything... */
 ch = pic[0].scb[0];
 if ((ch >> 7) > 0) { /* Set MasterMode to 0x80 if mode640 */

picMain[0].MasterMode = Motorola16((ushort)0x80);
/* Reset Horizontal Resolution to 640 pixels */
picMain[0].PixelsPerScanline = Motorola16((ushort)640);

 }
 /* copy palette from picfile */
 memcpy(&picMain[0].ColorTable[0][0],&pic[0].pal[0][0],512);
 fwrite((char*)&picMain[0].Length,sizeof(PNTPIC),1,fp);
 if (ferror(fp)) break;
 blocklen = (ulong)sizeof(PNTPIC);
 for (y=0;y<200;y++) {

len = HackBytes((uchar *)&pic[0].line[y][0],160,use_threshold);
fwrite((char *)&PackedBuf[0],sizeof(uchar) * len,1,fp);
if (ferror(fp)) { status = FAILURE;break;}
picMain[0].ScanLineDirectory[y][0] = Motorola16(len);

 picMain[0].ScanLineDirectory[y][1] =
 Motorola16((ushort)pic[0].scb[y]); blocklen += len;
 }
 if (status == FAILURE) { status = INVALID; break; }
 rewind(fp); picMain[0].Length = Motorola32(blocklen);
 fwrite(&picMain[0].Length,sizeof(PNTPIC),1,fp);
 if (ferror(fp)) break; status = SUCCESS;
}
fclose(fp); PntFree();
if (status == SUCCESS) printf("Created: %s\n",pntfile);
else printf("Can't Create %s!\nOutput File Write Error!
Exiting...\n",pntfile);
return status;
}

5/7/2014 Portable HackBytes in C – a Case Study Page 40 of 64

Transforming “raw” SHR Settings to APF File Settings

In the code above, some helper functions are called to transform the “raw” SHR data to
the format expected by the APF file:

/* allocates memory and sets-up defaults for the type of
 PNT file output that will be produced */
sshort PntAlloc()
{
 sshort status = INVALID;
 uchar buf[10];
 if (PackAlloc(160) == INVALID) return status;
 switch(input_format) {
 case BROOKS_FMT:
 MultiPal = (MULTIPAL *) malloc(sizeof(MULTIPAL));
 if (NULL == MultiPal){

PackFree();
puts("Not Enough Memory for Multipalette... Exiting!");
break;

 }
 brooksMain = (PNTBROOKS *) malloc(sizeof(PNTBROOKS));
 if (NULL == brooksMain) {
 puts("Not Enough Memory for Main... Exiting!");

free(MultiPal); PackFree(); break;
 }
 /* set defaults and invariants */
 memset(&MultiPal[0].Length,0,sizeof(MULTIPAL));
 MultiPal[0].Length = Motorola32((ulong)sizeof(MULTIPAL));
 strcpy(&buf[1],"MULTIPAL"); buf[0] = 8;
 memcpy(&MultiPal[0].Kind[0],&buf[0],9);
 MultiPal[0].NumColorTables = Motorola16((ushort)200);
/* The 200 Palettes will be assigned when the Brooks Palettes are built
so nothing further to do except write to disk when done processing */
 memset(&brooksMain[0].Length,0,sizeof(PNTBROOKS));
 strcpy(&buf[1],"MAIN"); buf[0] = 4;
 memcpy(&brooksMain[0].Kind[0],&buf[0],5);
 brooksMain[0].PixelsPerScanline = Motorola16((ushort)320);
/* as dumb as it may sound, the CiderPress file viewer needs one color
table to be included in the MAIN block even when a Brooks MULTIPAL is
used. */
 brooksMain[0].NumColorTables = Motorola16((ushort)1);
 brooksMain[0].NumScanLines = Motorola16((ushort)200);
/* the scbs will be setup in the scan line directory with the packed
lengths when the scanlines are packed... */
status = SUCCESS; break;

The code above sets-up the mode3200 APF and the code below sets-up the mode320 and
mode640 APF.

5/7/2014 Portable HackBytes in C – a Case Study Page 41 of 64

case PIC_FMT:
default:

picMain = (PNTPIC *) malloc(sizeof(PNTPIC));
if (NULL == picMain) {
 puts("Not Enough Memory for Main... Exiting!");
 PackFree(); break;
}
/* set defaults and invariants */
memset(&picMain[0].Length,0,sizeof(PNTPIC));
strcpy(&buf[1],"MAIN"); buf[0] = 4;
memcpy(&picMain[0].Kind[0],&buf[0],5);
/* change to 640 if needed after loading raw file */
picMain[0].PixelsPerScanline = Motorola16((ushort)320);
picMain[0].NumColorTables = Motorola16((ushort)16);
picMain[0].NumScanLines = Motorola16((ushort)200);
status = SUCCESS; break;

 }
return status;
}

Little Endian and Big Endian Helper Functions

In the code above assignment of integral values to the APF headers is not done directly,
but through the return of values. Whether we are writing or reading an APF, functions are
provided to simplify indirect transformation to and from the APF’s integral values.

The APF file format uses Motorola’s Big Endian rather than INTEL’s Little Endian
storage format for 16 bit short integers and 32 bit long integers. If a compiler stores data
internally in little endian, the byte order needs to be reversed to big endian, as in the case
of the MinGW gcc compiler for Windows which I used to initially create all of this.

/* intel uses little endian */
/* motorola uses big endian */
/* for raw output */
ulong Intel32(ulong val)
{
 uchar buf[4];
 ulong *ptr;
 /* msb in largest address */
 buf[0] = (uchar) val &0xff; val >>=8;
 buf[1] = (uchar) val &0xff; val >>=8;
 buf[2] = (uchar) val &0xff; val >>=8;
 buf[3] = (uchar) val &0xff;
 /* cast back to unsigned long data type */
 ptr = (ulong *)&buf[0];
 val = ptr[0];
 return val;
}

5/7/2014 Portable HackBytes in C – a Case Study Page 42 of 64

/* for raw output */
ushort Intel16(ushort val)
{
 uchar buf[12];
 ushort *ptr;
 /* msb in largest address */
 buf[0] = (uchar) val &0xff; val >>=8;
 buf[1] = (uchar) val &0xff;
 /* cast back to unsigned short data type */
 ptr = (ushort *)&buf[0];
 val = ptr[0];
 return val;
}
/* for packed output */
ulong Motorola32(ulong val)
{
 uchar buf[4];
 ulong *ptr;
 /* msb in smallest address */
 buf[0] = (uchar) (val % 256); val = val/256;
 buf[1] = (uchar) (val % 256); val = val/256;
 buf[2] = (uchar) (val % 256); val = val/256;
 buf[3] = (uchar) (val % 256);
 /* cast back to unsigned long data type */
 ptr = (ulong *)&buf[0];
 val = ptr[0];
 return val;
}
/* for packed output */
ushort Motorola16(ushort val)
{
 uchar buf[2];
 ushort *ptr;
 /* msb in smallest address */
 buf[0] = (uchar) (val % 256); val = val/256;
 buf[1] = (uchar) (val % 256);
 /* cast back to unsigned short data type */
 ptr = (ushort *)&buf[0];
 val = ptr[0];
 return val;
}

P2p wants to work even if compiled on some old 68000 machine, so endianness needs to
be observed when setting-up these defaults. While endianness may be arbitrary to a
compiler’s internal storage, it is not arbitrary when it comes to converting a PIC or
Brooks file to an APF file.

5/7/2014 Portable HackBytes in C – a Case Study Page 43 of 64

Brooks Palette to APF Palette Helper Function

In the preceding code for the PackApf() function, the first function call that is made when
converting a Brooks file to a mode3200 APF file is a call to the helper function
SetUpBrooksPalette(). Since all we are doing is reversing the order of the $0RGB values
during the copy to the MULTIPAL block, this is simply a matter of going forward in
reverse for each of the 200 palettes (one for each scan-line) using an integer pointer.

void SetUpBrooksPalette()
{
ushort *brookspal, *pntpal;
sshort y,i,j;
/* Brooks Palette Lines are in reverse order… the color value for
color 15 is stored first.*/
 for (y=0;y<200;y++) {
 /* Build the Palette line for the APF from the Brooks Palette line */
 brookspal = (ushort *)&brooks[0].pal[y][0];
 pntpal = (ushort *)&MultiPal[0].ColorTableArray[y][0];
/* According to Apple's Filetype Notes mode3200 palettes are in the
same order as any other palette: 0..16 so flip the brooks palette end
for end */
 for (i=0,j=15; i < 16; i++,j--) pntpal[i] = brookspal[j];
 }
}

Unlike mode320 and mode640 APF files, Mode3200 APF files do not store Brooks
palettes in the MAIN information block, but in a separate block called a MULTIPAL.

Mode320 and mode640 PIC files represented as APF files are less convoluted than
Brooks Files represented as APF files because they only have a single block; the entire
PIC file is stored in the MAIN block. There is however some ambiguity even with PIC
files converted to APF files because, typical of the mixed-mode tradition of the Apple II,
the SHR display supports mixing mode640 and mode320 scan-lines on the screen at the
same time. But APF files have the notion of something called a MasterMode which only
allows for a single video mode which aims to compensate for the lack of a
BytesPerScanline field by instead using a PixelsPerScanline and the MasterMode
together to determine the number of bytes per scanline. I don’t know whether mixed
mode ever saw much use, so perhaps this isn’t even an issue..

Brooks files do not share the same multiple mode disorder because mode640 is not
supported by the format as far as I know, but are inflicted instead with a multiple palette
disorder. The recommendation in Apple Computer's APF File Type Notes to provide a
greyscale representation of a Brooks Image is almost as weird as describing the device
dependent APF format as flexible. A Brooks Image of any complexity at all is unlikely to
be able to use the same index throughout to represent the same color unless it is really a
16 color pic file that had a bad day and got lost in a mode3200 converter.

5/7/2014 Portable HackBytes in C – a Case Study Page 44 of 64

By definition, Brooks Palette Indexes, like most any index in palettized bitmapped
graphics, do not have any relationship to the RGB values in the palette itself; therefore
they can (and likely do) have a different index order and/or different colors for each of
the 200 lines, unless colors are posterized and indices are sorted or unless Brooks format
was mis-used to store a 16 color image. But, to satisfy the loaders that were written with
this requirement in mind, p2p provides one (and only one) All Black "GreyScale" Color
Table in the Main Block of the APF files it produces, created simply by memsetting the
structure to NUL bytes when it is initialized.

By December 1991, when Apple Computer last revised the APF File Type Notes, device
independent formats like BMP3 were in wide use, and other device independent formats
had been around around for years. One wonders why Apple didn't use the opportunity of
their final revision of the APF notes to replace the word "flexible" with something more
accurate. Apple’s standards seem more important at the start of a product life-cycle.

The UnPackBytes() Function

/*
* Unpack the Apple PackBytes format.
*
* Format is:
* <flag><data> ...
*
* Flag values (first 6 bits of flag byte):
* 00xxxxxx: (0-63) 1 to 64 bytes follow, all different
* 01xxxxxx: (0-63) 1 to 64 repeats of next byte
* 10xxxxxx: (0-63) 1 to 64 repeats of next 4 bytes
* 11xxxxxx: (0-63) 1 to 64 repeats of next byte taken as 4 bytes
* (as in 10xxxxxx case)
*
* Pass the destination buffer in "dst", source buffer in "src", source
* length in "srcLen", and expected sizes of output in "dstRem".
*
* Returns 0 on success, nonzero if the buffer is overfilled or
underfilled.
*/
/* the following code is taken literally from CiderPress
(ReformatBase.cpp) and dummied-down to C from C++. It is also lightly
modified to support a test mode when a NULL pointer is passed as a
destination buffer address.
this test mode is helpful for verifying files during decoding and also
for debugging.
if you decide to use this in your own programs Andy's licence (above)
is required and must be followed.
Sorry Andy. I wouldn't have been able to write a different decoder
unless I was decoding something different.
Apparently Out-encoding Apple Computer is easier done than Out-decoding
Andy McFadden. */

5/7/2014 Portable HackBytes in C – a Case Study Page 45 of 64

int UnPackBytes(uchar *dst, uchar * src, long dstRem, long srcLen)
{
uchar flag, val, valSet[4];
int count, i, unpacking = 1; /* active state = 1, test state = 0 */
if (NULL == dst) unpacking = 0;
while (srcLen > 0) {
 flag = *src++;
 count = (flag & 0x3f) +1;
 srcLen--;
 switch (flag & 0xc0) {
 case 0x00:
 for (i = 0; i < count; i++) {

if (srcLen == 0 || dstRem == 0) {
#ifdef DEBUG
printf("SHR unpack overrun1 (srcLen=%ld dstRem=%ld)\n",srcLen,dstRem);
#endif

 return INVALID;
}
if (unpacking) *dst++ = *src++;
else *src++;
srcLen--;
dstRem--;

 }
 break;
 case 0x40:
 if (srcLen == 0) {
#ifdef DEBUG
printf("SHR unpack underrun2\n");
#endif

return INVALID;
 }
 val = *src++;
 srcLen--;
 for (i = 0; i < count; i++) {

if (dstRem == 0) {
#ifdef DEBUG
printf("SHR unpack overrun2 (srcLen=%d, i=%d of %d)\n",srcLen, i,
count);
#endif

 return INVALID;
}
if (unpacking) *dst++ = val;
dstRem--;

 }
 break;
 case 0x80:
 if (srcLen < 4) {
#ifdef DEBUG
printf("SHR unpack underrun3\n");
#endif

return INVALID;
 }
 valSet[0] = *src++;
 valSet[1] = *src++;
 valSet[2] = *src++;
 valSet[3] = *src++;
 srcLen -= 4;

5/7/2014 Portable HackBytes in C – a Case Study Page 46 of 64

 for (i = 0; i < count; i++) {
if (dstRem < 4) {

#ifdef DEBUG
printf("SHR unpack overrun3 (srcLen=%ld dstRem=%ld)\n",srcLen, dstRem);
#endif

 return INVALID;
}
if (unpacking) {
 *dst++ = valSet[0];
 *dst++ = valSet[1];
 *dst++ = valSet[2];
 *dst++ = valSet[3];
}
dstRem -= 4;

 }
 break;
case 0xc0:
 if (srcLen == 0) {
#ifdef DEBUG
printf("SHR unpack underrun4\n");
#endif

return INVALID;
 }
 val = *src++;
 srcLen--;
 for (i = 0; i < count; i++) {

if (dstRem < 4) {
#ifdef DEBUG
printf("SHR unpack overrun4 (srcLen=%ld dstRem=%ld count=%d)\n",srcLen,
dstRem, count);
#endif

 return INVALID;
}
if (unpacking) {
 *dst++ = val;*dst++ = val;*dst++ = val;*dst++ = val;
}
dstRem -= 4;

 }
 break;
default:
#ifdef DEBUG
 printf("Invalid Mask!\n");
#endif
 break;
 }
}
/* require that we completely fill the buffer */
if (dstRem != 0) {
#ifdef DEBUG
printf("SHR unpack dstRem at %d\n", dstRem);
printf("Flag = 0x%02x count = %d\n", flag &0xc0, count);
#endif
return INVALID;
}
return SUCCESS;
}

5/7/2014 Portable HackBytes in C – a Case Study Page 47 of 64

Decoding Packed SHR Files with UnPackBytes

Decoding SHR files does not seem so mysterious as encoding them, from what I have
seen. Now I could be wrong, and maybe somewhere there are a pile of PackBytes
encoders that work on every modern platform, available with C language source code and
freely distributed.

In which case, I am not very original. But at the risk of being more redundant than usual,
and even less original, since Andy McFadden long ago provided PackBytes as open
source with CiderPress, this section of the document provides the Reformatter from the
p2p program, and some of the details of decoding Packed SHR files with UnPackBytes.

/* Similar logic to CiderPress's Reformat Handlers but comparatively just a subset since p2p
converts screensize SHR images only for mode320, mode640 and mode3200.

Rules as to whether we want to handle these or not are based on similar logic to Andy's Logic but are
more restrictive. But they ain't special either.

If you are into reading Andy's code, here's some equivalents:

Conversion from Packed to Raw:
ReformatPackedSHR - for conversion to PIC (SHR) - $C1 $0000
input_format = PAK_FMT
output_format= PIC_FMT

ReformatPacked3200SHR - for conversion to BROOKS (SH3) - $C1 $0002
input_format = PAK_FMT
output_format= BROOKS_FMT

ReformatAPFSHR - for conversion to PIC (SHR) or Brooks (SH3)
input_format = PNT_FMT
output_format= PIC_FMT or output_format=BROOKS_FMT

Conversion from Raw to Packed:
ReformatUnpackedSHR - for conversion to PNT $C0 $0002 or PAK $C0 $0001
Reformat3200SHR - for conversion to PNT $C0 $0002 or PA3 $C0 $0004

Additional Logic (there's no FT Note for this):
ReformatPacked3200SHR - No FTN for this and not included in CiderPress.

Andy handles a handful of oddball SHR files in CiderPress. I am not into that.
I could also have handled additional logic for SinglePalette 16 Color Packed files, simply based on a
size comparison, but I really see no point; there needs to be some scope to all of this, so I am trying to
stay with the files in the FTN's that are relatively standard. */

/* if we want to handle the input file it is read into the input buffer previously allocated in main() and
the input_format is set to the input file type, a raw equivalent is dumped right in-here. It just makes
more sense since we are rummaging through the darned things in memory anyway so they get half-
decoded before we know what they are.

5/7/2014 Portable HackBytes in C – a Case Study Page 48 of 64

It might look a little daunting but the logic is dead-dumb simple...

1. Unpack the Encoded File to a raw equivalent.
2. Write the raw equivalent to disk.

If the input file is invalid for whatever reason the input_format is set to invalid and this bad-boy
returns. On completion of any file read operation ReformatSHR() closes the input file.

Any decoding needed is done, and while we're decoding the output file is written. If the input file is a
raw file however, it is hived-off to a ex-process proxy decoder based on the Portable HackBytes
output options: APF or PAK/PA3.

Whether decoding or encoding, ReformatSHR returns the input_format to main() and main() can
decide what to do from here... based on the requested output.

I could have done more with this, but at this point converting from a packed APF to another packed
file like PAK or PA3 seems to be overkill and likely not worth the effort, since a person can always
unpack one and then repack to the third for romantic reasons if any.

These days, there's limited use for PackBytes encoded files, but likely even less use for APF files
larger than a IIgs SHR display. But the point of the exercise was to write a more efficient PackBytes
encoder, so having done so, evidence is needed, even if no other reason exists.

That's the real reason for providing a PAK file and its PA3 Brooks equivalent. Anything further is
nice to see in a IIgs Paint Program if one could find more than only one that actually works.
*/

sshort ReformatSHR(FILE *fp)
{

unsigned int x,y;
int status = SUCCESS;
ulong flen, hlen;
size_t packet;
PNTHEAD *header;
PNTPAL *pal;
PNTSCB *scb;
uchar *outbuf;
ushort *brookspal, *pntpal, MinimumSize, NumScanLines;

ushort offset, i, j, k;
ushort MasterMode, NumColorTables, PixelsPerScanline, NumScanlines, NumPalettes;

input_format = INVALID;

/* get the length of the file */
fseek(fp, 0L, 2);
flen = ftell(fp);

/* avoid empty files */
if (flen < sizeof(PNTHEAD) || flen > 64000L) {

fclose(fp);
printf("Unsupported Input File Size = %ld. Exiting...\n",flen);
return input_format;

}

5/7/2014 Portable HackBytes in C – a Case Study Page 49 of 64

/* PackBytes - based on filesize alone

We don't have the luxury of a IIgs FileType and AuxType here. If someone wants to put garbage in,
they will get garbage out. We aim to please.

*/
if (output_format == PNT_FMT || output_format == PAK_FMT) {

if (flen == PIC_LEN) {
 if (output_format == PAK_FMT) {

if (use_tags == 0) strcat(pntfile,".pak");
else strcat(pntfile,".pak#C00001");

 }
 else {

if (use_tags == 0) strcat(pntfile,".pnt");
else strcat(pntfile,".pnt#C00002");

 }
 input_format = PIC_FMT;
}
else if (flen == BROOKS_LEN) {
 if (output_format == PAK_FMT) {

if (use_tags == 0) strcat(pntfile,".pa3");
else strcat(pntfile,".pa3#C00004");

 }
 else {

if (use_tags == 0) strcat(pntfile,".pnt");
else strcat(pntfile,".pnt#C00002");

 }
 input_format = BROOKS_FMT;
}
else {
 fclose(fp);
 printf("Unsupported Raw Input File Size = %ld. Exiting...\n",flen);
 return input_format;
}

/* read into the shr buffer */
rewind(fp);
packet = (size_t) (flen/4);
for (x = 0; x < flen; x+= packet) {
 fread((char *)&shrbuf[x],sizeof(char),packet,fp);
 if ((status = ferror(fp))!=0) break;
}
fclose(fp);
if (status!= SUCCESS) {
 printf("Input File Read Error: %d! Exiting...",status);
 input_format = INVALID;
}
return input_format;

}

What happens after the above code has executed is already listed in the HackBytes code.
What follows is the unpacker which will decode files created by either Apple’s
PackBytes or our own HackBytes:

5/7/2014 Portable HackBytes in C – a Case Study Page 50 of 64

/* UnPackBytes */
if (flen == PIC_LEN || flen == BROOKS_LEN) {

/* don't overwrite ourselves */
fclose(fp);
printf("Input File already unpacked! Exiting...\n");
input_format = INVALID;
return input_format;

}
rewind(fp);
packet = (size_t) (flen/4);
for (x = 0; x < flen; x+= packet) {

fread((char *)&shrbuf[x],sizeof(char),packet,fp);
if ((status = ferror(fp))!=0) break;

}

if (status == SUCCESS) {
x = (unsigned) packet * 4;
flen -= x;
if (flen > 0) {
 packet = (size_t) flen;
 fread((char *)&shrbuf[x],sizeof(char),packet,fp);
 status = ferror(fp);

}
flen += x;

}
fclose(fp);

if (status != SUCCESS) {
printf("Input File Read Error: %d! Exiting...",status);
input_format = INVALID;
return input_format;

}

After we check for some obvious errors we try to read the input file as an APF file first,
then as an Eagle/PackBytes file. Our test for APF is quick so it deserves to be first; it
includes a considerable amount of validation, not only because it is possible without
unpacking the whole file like in the case of Eagle/Packbytes, but also because data
coming out of an APF is what Apple Computer calls “flexible” so this lets us rule out the
honest errors while we make the jokers who may have fed us a BMP or a pdf file just to
see what happens wait until the very end. Anytime you can let the jokers wait until the
end is a good time. While interpreting APFs is common sense, interpreting Apple
Computer’s documentation for them, like much else to do with the Apple II, requires
imagination and the reading of many once-expensive scraps to implement.

The code below is organized into a tight loop which breaks when the input file is unlikely
to be an APF and which returns an error when the file is likely to be an APF in an
unsupported variation. While not infallible it is certainly better than using file size which
is what we need to do with all the other input formats that p2p handles.

5/7/2014 Portable HackBytes in C – a Case Study Page 51 of 64

/* when we are outputting to raw formats from pnt or pak we just overwrite a file if it already exists.
*/
/* do we want to handle this file? */
/* check for an APF file */
header = (PNTHEAD *)&shrbuf[0];

for (;;) {

/* check the MAIN information block. if the input file doesn't start with a MAIN block
 assume it's not an APF file. */

/* 4 'M' 'A' 'I' 'N' */
if (header[0].Kind[0] != 4) break;

if (memcmp((char *)&header[0].Kind[1],"MAIN",4) != 0) break;

/*
if (header[0].Kind[1] != 'M' || header[0].Kind[2] != 'A' ||
 header[0].Kind[3] != 'I' || header[0].Kind[4] != 'N') break;

 */
/* at this point we know we have an APF file. */

/* The FTN for APF says that a ColorTable is not required, but goes on to say that at least one
GreyScale ColorTable is required to preview a mode3200 image with a MULTIPAL block.
*/
NumColorTables = Intel16(header[0].NumColorTables);
if (NumColorTables < 1 || NumColorTables > 16) {
 /* CiderPress uses this criteria. Since I am using CiderPress as part of the validation suite for this
program and since this is consistent with the FTN's recommendation for a preview palette and since
DreamGraphix opens conversions from this program properly it seems reasonable to use the same
ColorTable criteria as CiderPress. */

 printf("APF found with %u Color Tables!\n",NumColorTables);
 puts("Valid range is 1-16! Exiting...");
 break;

}

/* Check Horizontal Resolution */
/* MasterMode together with PixelsPerScanline determines the number of bytes to unpack per line.
Therefore the two must be set properly by their creator. */
MasterMode = Intel16(header[0].MasterMode);
PixelsPerScanline = Intel16(header[0].PixelsPerScanline);

if (PixelsPerScanline == 320 || PixelsPerScanline == 640) {
/* If MasterMode is 0x00 and PixelsPerScanline is 640 the APF is double the width of the screen.
 If Mastermode is 0x80 and PixelsPerScanline is 320 the APF is half the width of the screen. */
 if (MasterMode == 0 || MasterMode == 0x80) {

if ((MasterMode == 0 && PixelsPerScanline == 640) ||
 (MasterMode == 0x80 && PixelsPerScanline == 320)) {

 printf("APF found with MasterMode %x (hex) and PixelsPerScanline %d!\n",
 MasterMode, PixelsPerScanline);

 puts("Valid range is 0 (hex) and 320 or 80 (hex) and 640! Exiting...");
 break;
}

 }

5/7/2014 Portable HackBytes in C – a Case Study Page 52 of 64

 else {
/* if the MasterMode has not been set properly the file is broken and can't be trusted */
printf("APF found with MasterMode %x (hex)!\n",MasterMode);
puts("Valid range is 0 or 80 (hex)! Exiting...");
break;

 }

}
else {
 /* if the APF is not a screenwidth APF we don't handle it because we are converting to full-screen
 RAW formats in this program. */
 printf("APF found with %u PixelsPerScanline!\n",PixelsPerScanline);
 puts("Supported Horizontal Resolutions are 320 or 640! Exiting...");
 break;
}

offset = (ushort) (sizeof(PNTHEAD) + (NumColorTables * 32));
scb = (PNTSCB *)&shrbuf[offset];
NumScanLines = Intel16(scb[0].NumScanLines);
if (NumScanLines != 200) {
 printf("APF found with %u ScanLines!\n",NumScanLines);
 puts("Supported Vertical Resolution is 200! Exiting...");
 break;
}

/* the minimum size for the MAIN block of a screen width APF adds the fixed fields together
with the ColorTables (32 * NumColorTables) and (200 lines x 4 bytes).
4 bytes is the minimum number of bytes for a one colored PackBytes encoded line of 160 bytes */
MinimumSize = (ushort) (sizeof(PNTHEAD) + (NumColorTables * 32) + sizeof(PNTSCB) + 800);
hlen = Intel32(header[0].Length);
if (hlen < MinimumSize) {
 printf("APF MAIN Block Length %ld below Minimum Size %u!\n",hlen,MinimumSize);
 puts("Exiting...");
 break;
}
/* the MAIN block will never be longer than the file size */
if (hlen > flen) {
 printf("APF MAIN Block Length %ld exceeds File Size %ld!\n", hlen, flen);
 puts("Exiting...");
 break;
}

/* I am expecting the MULTIPAL block with 200 sequential ColorTables to directly follow the MAIN
Block in a mode3200 file. If somebody is using a NOTES block or some other Block we will not
handle the file as a mode3200 file.

If somebody is using a MULTIPAL instead of the ColorTable in the MAIN Block for a mode320 or a
mode640 file we will just use the ColorTable in the Main Block.

We are not prepared to handle every funky variation like Andy does.

So unless a Brooks file has been properly encoded in the APF it may end-up with pieces missing, or it
could end-up as a PIC file with scb's that don't make sense. */

for (;;) {
 output_format = PIC_FMT;

5/7/2014 Portable HackBytes in C – a Case Study Page 53 of 64

 NumPalettes = 0;
 if (PixelsPerScanline != 320) break;

 /* if a MultiPalette is used for other than a mode3200 file I have no idea what this might be about */
 MultiPal = (MULTIPAL *)&shrbuf[hlen];
 if (MultiPal[0].Kind[0] != 8) break;
 if (memcmp((char *)&MultiPal[0].Kind[1],"MULTIPAL",8) != 0) break;
 /* we have a MultiPalette */
 NumPalettes = Intel16(MultiPal[0].NumColorTables);
 if (NumPalettes == 200) output_format = BROOKS_FMT;
 break;
}

if (output_format == BROOKS_FMT) {
 if (NULL == (outbuf = malloc(38400))) {

puts("No memory for Write Buffer! Exiting...");
input_format = INVALID;
return input_format;

 }
 memset(&outbuf[0],0,38400);
 brooks = (BROOKSFILE *)&outbuf[0];

 for (y=0;y<200;y++) {
/* Build the Palette line for the Brooks File from the APF Palette line */
brookspal = (ushort *)&brooks[0].pal[y][0];
pntpal = (ushort *)&MultiPal[0].ColorTableArray[y][0];

/* According to Apple's Filetype Notes mode3200 palettes are in the same order as any other palette:
0..16 so flip the APF palette end for end */

for (i=0,j=15; i < 16; i++,j--) brookspal[j] = brookspal[j] = pntpal[i];
 }

 if (use_tags == 0) strcat(pntfile,".sh3");
 else strcat(pntfile,".sh3#C10002");

}
else {
 if (NULL == (outbuf = malloc(32768))) {

puts("No memory for Write Buffer! Exiting...");
input_format = INVALID;
return input_format;

 }
 memset(&outbuf[0],0,32768);
 offset = (ushort) sizeof(PNTHEAD);
 pal = (PNTPAL *)&shrbuf[offset];
 pic = (PICFILE *)&outbuf[0];

 /* copy palette from APF file to picfile */
 memcpy(&pic[0].pal[0][0],&pal[0].ColorTable[0][0],(NumColorTables * 32));

 /* build the scbs from the APF file */
 for (y=0;y<200;y++) {

pic[0].scb[y] = (uchar) Intel16(scb[0].ScanLineDirectory[y][1]);
 }
 if (use_tags == 0) strcat(pntfile,".shr");
 else strcat(pntfile,".shr#C10000");
}

5/7/2014 Portable HackBytes in C – a Case Study Page 54 of 64

fp = fopen(pntfile,"wb");
if (NULL == fp) {
 free(outbuf);
 printf("Unable to open %s for output!\nExiting...\n",pntfile);
 input_format = INVALID;
 return input_format;
}

We are committed to writing an APF by the time we get to here. The only thing that can
stop us now is a file write error:

/* now unpack the bytes - packed scan-lines are below the APF header info */
offset = (ushort) (sizeof(PNTHEAD) + (NumColorTables * 32) + sizeof(PNTSCB));
/* length of packed scanlines */
hlen -= offset;

if(UnPackBytes((uchar *)&outbuf[0],(uchar *)&shrbuf[offset],(long)32000, (long)hlen) != INVALID)
{
 input_format = PNT_FMT;
 fwrite((uchar *)&outbuf[0],sizeof(uchar) * 32000,1,fp);
 if (ferror(fp)) input_format = INVALID;
 else {

if (output_format == BROOKS_FMT) fwrite((uchar *)&outbuf[32000],
 sizeof(uchar) * 6400,1,fp);

else fwrite((uchar *)&outbuf[32000],sizeof(uchar) * 768,1,fp);
if (ferror(fp)) input_format = INVALID;

}
if (input_format == INVALID) printf("Can't Create %s!\nOutput File Write Error!
Exiting...\n",pntfile);
}
else {
 printf("Can't Create %s!\nUnPackBytes Error! Exiting...\n",pntfile);
}

fclose(fp);
if (input_format == INVALID) remove(pntfile);
else printf("Created: %s\n",pntfile);

free(outbuf);
return input_format;
}

If we have got to this point, whatever input file we have is either an Eagle/PackBytes file
of some kind or can safely be considered garbage shoved in here by some joker. If the
input file decodes either to the size of a Brooks file or the size of a Pic file we proceed on
faith alone that it is in fact a file that we want to handle. This where we do a dry-run first
to save a few cycles while we determine if we can unpack cleanly to the size of the larger
Brooks file. If the larger file is not a clean unpack we try to unpack to the size of the
smaller Pic file. If that fails, we give-up and return an error and hopefully the joker who
is feeding us garbage eventually gives-up trying to break us:

5/7/2014 Portable HackBytes in C – a Case Study Page 55 of 64

/* two more tests - first try to decode a packed Brooks File */
if(UnPackBytes(NULL,(uchar *)&shrbuf[0],(long)BROOKS_LEN, (long)flen) != INVALID) {
 input_format = PAK_FMT;
 output_format = BROOKS_FMT;
 if (NULL == (outbuf = malloc(38400))) {

puts("No memory for Write Buffer! Exiting...");
input_format = INVALID;
return input_format;

 }

 if (use_tags == 0) strcat(pntfile,".sh3");
 else strcat(pntfile,".sh3#C10002");

 fp = fopen(pntfile,"wb");
 if (NULL == fp) {

free(outbuf);
printf("Unable to open %s for output!\nExiting...\n",pntfile);
input_format = INVALID;
return input_format;

 }
 UnPackBytes((uchar *)&outbuf[0],(uchar *)&shrbuf[0],(long)BROOKS_LEN, (long)flen);
 fwrite((uchar *)&outbuf[0],sizeof(uchar) * 32000,1,fp);
 if (ferror(fp)) input_format = INVALID;
 else {

fwrite((uchar *)&outbuf[32000],sizeof(uchar) * 6400,1,fp);
if (ferror(fp)) input_format = INVALID;

 }
 fclose(fp);
 if (input_format == INVALID) {

printf("Can't Create %s!\nOutput File Write Error! Exiting...\n",pntfile);
remove(pntfile);

 }
 else {

printf("Created: %s\n",pntfile);
 }
 free(outbuf);
 return input_format;

}
else {
/* if it's not a packed Brooks File try to decode a Packed PIC File */
if(UnPackBytes(NULL,(uchar *)&shrbuf[0],(long)PIC_LEN, (long)flen) != INVALID) {
 input_format = PAK_FMT;
 output_format = PIC_FMT;
 if (NULL == (outbuf = malloc(32768))) {

puts("No memory for Write Buffer! Exiting...");
input_format = INVALID;
return input_format;

 }

 if (use_tags == 0) strcat(pntfile,".shr");
 else strcat(pntfile,".shr#C10000");

5/7/2014 Portable HackBytes in C – a Case Study Page 56 of 64

 fp = fopen(pntfile,"wb");
 if (NULL == fp) {

free(outbuf);
printf("Unable to open %s for output!\nExiting...\n",pntfile);
input_format = INVALID; return input_format;

 }

 UnPackBytes((uchar *)&outbuf[0],(uchar *)&shrbuf[0],(long)PIC_LEN, (long)flen);
 fwrite((uchar *)&outbuf[0],sizeof(uchar) * 32000,1,fp);
 if (ferror(fp)) input_format = INVALID;
 else {

fwrite((uchar *)&outbuf[32000],sizeof(uchar) * 768,1,fp);
if (ferror(fp)) input_format = INVALID;

 }
 fclose(fp);
 if (input_format == INVALID) {

printf("Can't Create %s!\nOutput File Write Error! Exiting...\n",pntfile);
remove(pntfile);

 }
 else {

printf("Created: %s\n",pntfile);
 }
 free(outbuf);
 return input_format;

}
else {
 printf("Unsupported Packed Input File!\nNot a Packed PIC or Brooks File. Exiting...\n");
}
}

return input_format;
}

So that is how we handle reading and unpacking and writing the “raw” SHR files that we
learned to create using Portable HackBytes. After all, only a brain-dead messed-up
dysfunctional jerk of a PackBytes decoder would care whether an SHR file was created
on an Apple IIgs Computer or if we created and encoded the file on an iPhone, any more
than if a GIF or a ZIP file was created in Linux and loaded in Windows or OSX.

5/7/2014 Portable HackBytes in C – a Case Study Page 57 of 64

Test Results - Compatibility And Regression

Portable HackBytes has seen a considerable amount of testing for regression and
equivalence using a small test suite of programs which, in addition to my own 8 bit APF
loader written in Aztec C65, include the CiderPress File Viewer, Ron Mercer’s SHR
View, DreamGraphix ™ and PaintWorks Gold.

The CiderPress File Viewer, SHR View and DreamGraphix properly unpack and
displayed both APF and Eagle/PackBytes PNT files created by p2p using Portable
HackBytes. PaintWorks Gold also has no problems unpacking APF images compressed
with Portable HackBytes.

But PaintWorks Gold seems incapable of displaying even an uncompressed raw pic file
properly, so offers little value as a testing tool except to confirm the compatibility of
Portable HackBytes compressed APF images created by p2p. PaintWorks Gold also does
not recognize files saved in the Eagle/Packbytes format at all, making it an even poorer
choice as a testing tool, and perhaps a poor choice as a Paint Program.

The image below converted to an APF file using p2p and Portable HackBytes decodes
and displays properly in DreamGraphix, and decodes properly in PaintWorks Gold.

5/7/2014 Portable HackBytes in C – a Case Study Page 58 of 64

5/7/2014 Portable HackBytes in C – a Case Study Page 59 of 64

Test Results - Performance – Comparing Apples to Bananas

A complex mode320 or mode640 SHR file with few repeats and every color used
probably won’t compress very well using PackBytes. A complex mode3200 Brooks file
is generally even larger because it contains 200 palettes instead of the 16 required for
mode320 and mode640. It may not even be worthwhile to compress complex screen size
SHR files, considering the extra programming overhead required to unpack and display
these. However, for a mode3200 file extra programming is always required. But whether
to pack them or leave them raw depends on what you want them for.

Test Results - Mode3200 Files

Raw Blocks PAK Blocks APF Blocks
Artemus.sh3 38,400 77 36,996 74 37,972 76
Boating.sh3 38,400 77 37,174 74 38,065 76
Colorseum.sh3 38,400 77 32,741 65 33,866 68
Galette.sh3 38,400 77 38,389 76 39,278 78
Pyramid.sh3 38,400 77 36,292 72 37,168 74
Reclining.sh3 38,400 77 37,458 75 38,349 76
Sphinx.sh3 38,400 77 36,068 72 37,587 75
Total 268,800 539 255,118 508 262,285 523

While not altogether meaningless, the table above does not accurately reflect either the
quality of the raw SHR file, or the methods used to create the raw SHR file. Since I have
selected “raw” SHR files above that have many colors, created with my general purpose
BMP2SHR utility, which makes no attempt to organize or order palettes at the image
level, this establishes a pretty accurate worst case compression ratio scenario.

5/7/2014 Portable HackBytes in C – a Case Study Page 60 of 64

The Contenders - Not Your Father’s SHR Converter

STYNX has developed a highly optimal “Modern” SHR converter, using the
ImageMagick API, which, among other things, organizes palettes for re-use throughout
an image; this is not your Father’s SHR converter! His converter is capable of advanced
techniques such as random dithering which are beyond the capabilities of BMP2SHR (my
SHR converter).

On the other hand, BMP2SHR uses “Classic” population method quantization to map a
palette. Each line’s palette in BMP2SHR’s mode3200 conversion can be quite differently
ordered and differently colored from the other lines. BMP2SHR is also quite faithful
about using 16 original colors rather than worrying about color space theories.

STYNX’s palettes are organized in potentially re-usable segments leading to more
potential repeats, and more consistent coloring between lines but more posterization (and
rings) when dithers are not used. Without discussing both converters in detail, it is
impossible to compare all the differences between the two. BMP2SHR is reasonably
capable, but usually more subject to banding. STYNX’s converter generally does a better
job since it has dithers to help it along, but even without dithers it does a very good job of
posterizing. I have disabled STYNX’s dithers for my comparison.

Both converters handle 24 bit TrueColor images. Like p2p and Portable HackBytes, they
run on Modern Computers and not on the IIgs, and literally convert in less than a second.
Comparing either’s latency to something on the IIgs is irrelevant.

But for the purposes of this discussion, we are concerned with a comparison between
packing “raw” SHR images of “Classic” quality versus “Modern” quality and not
processing speed. I could have used some other converters, but since these are the two
SHR converters I’ve had direct involvement with (although STYNX dreamed-up his
converter on his own), I am exercising my author’s prerogative of using my own
converter as a worst case scenario for file size, and disabling some of STYNX’s
advanced features for a more objective cross-reference and meaningful user experience.

SHR Converters may not all be created equal, but if I had used STYNX’s dithering
features and the other advanced techniques that it supports, we would have seen better
looking images from ImageMagick. I do apologize to Jonas for crippling his converter
for this example, but I needed to. Better quality images achieved by dithering would also
have resulted in more complex SHR images from STYNX’s converter that would have
compressed less efficiently, so we wouldn’t have had much difference to compare.

Test Results – Mode320 Files

The table below compares Portable HackBytes between a “Classic” conversion and
“Modern” conversion.

5/7/2014 Portable HackBytes in C – a Case Study Page 61 of 64

Raw Blocks BMP2SHR
PackBytes

Blocks STYNX
PackBytes

Blocks

38,400 77 36,996 74 35,742 71

38,400 77 37,174 74 37,710 75

38,400 77 32,741 65 31,498 63

38,400 77 38,389 76 38,379 76

38,400 77 36,292 72 30,029 60

38,400 77 37,458

97.54%

75

97.4%

37,335

97.22%

74

96.1%

38,400 77 36,068

93.92%

72

93.51%

32,616

84.94%

65

84.42%

Total 268,800 539 255,118 508 243,309 484
Compression Ratio 100% 100% 94.90% 94.25% 90.51% 89.80%

5/7/2014 Portable HackBytes in C – a Case Study Page 62 of 64

The Classic Approach - Roll Your Own! The Modern Approach -Use An API!

Comparing Apples to Apples

Portable HackBytes generally performs somewhat better than Apple Computer’s
PackBytes as near as I can tell.

Based on a series of tests of a set of 19 files in the Eagle/PackBytes format, files
compressed using Apple Computer’s native PackBytes used an average of more than 2%
disk space (in ProDOS 512K blocks) than the same SHR files compressed using Portable
HackBytes, and although it is probably less important than the actual space used on a
ProDOS disk, overall the natively compressed files were around 3% larger based on file
size.

While this difference of 15 ProDOS blocks is not a significant size difference, imagine
what you might have said if it were the wrong way around and the files produced by
Portable HackBytes were 15 blocks larger than the files produced by Apple Computer’s
routines. Since it only took about a second to encode all 19 files on my modern
computer, and the files were smaller when I was done, and survived my compatibility
tests it seems pointless to use the Apple IIgs PackBytes routines at all if one has a modern
computer and takes the Classic Approach instead of taking the Modern approach of using
the Apple IIgs API on a Classic computer.

5/7/2014 Portable HackBytes in C – a Case Study Page 63 of 64

Portable
HackBytes() Blocks

Apple IIgs
PackBytes Blocks

Apple
IIgs
Bloat %

ANGELFISH.pak 9,982 21 10,296 22 4.76
ASTRONUT.pak 26,315 53 26,375 53 0
BEHEMOTH.pak 15,484 32 15,797 32 0
BIG.pak 5,167 12 5,589 12 0
BUTTERFLY.pak 10,391 22 10,500 22 0
CD.pak 10,814 23 11,236 23 0
CLOWN.pak 23,656 48 24,135 49 2.08
COGITO.pak 22,340 45 22,842 46 2.22
COTTAGE.pak 21,165 43 21,571 44 2.33
FIGHTERS.pak 15,287 31 15,635 32 3.23
FLOWER.pak 17,469 36 18,584 38 5.56
JAZZ.pak 13,216 27 14,285 29 7.41
KNIFE.pak 22,640 46 23,153 47 2.17
LORI.pak 25,860 52 26,166 53 1.92
MAX.pak 11,943 25 13,219 27 8.00
OWL.pak 22,699 46 22,741 46 0
RED.DRAGON.pak 25,017 50 25,524 51 2.00
TAJ.pak 22,983 46 23,288 47 2.17
TUT.pak 15,585 32 15,848 32 0
Total 338,013 690 346,784 705 2.17

5/7/2014 Portable HackBytes in C – a Case Study Page 64 of 64

	Portable HackBytes – Hacking it In and UnPacking It Out
	Table of Contents
	Forward
	Licence Agreement and Disclaimer
	UnPackBytes() Licence
	Endorsement Disclaimer

	Acknowledgment
	Introduction
	Input/Output File Extension - SHR#C10000 - Pic
	Input/Output File Extension - SH3#C10002 - Brooks
	Input/Output File Extension - PAK#C00001 – Eagle/PackBytes
	PAK versus APF
	No Interpretation Needed
	Less Disk Space
	Better Optimization

	Input/Output File Extension - PNT#C00002 - APF
	Input/Output File Extension – PA3#C00004 – Brooks Eagle/PackBytes
	Additional SHR File Format Notes

	P2P – Pic to Pnt Portable HackBytes Example Program
	Program Organization
	The HackBytes() Function
	HackQuads and the Mid-Stream Encoder
	HackBytes and the Main Stream Encoder
	Portable HackBytes() Optimizations Table
	The HackQuads() Function
	Encoding 256 Color PAK Files with “Dry-Runs” and “Wet-Runs”
	Encoding 3200 Color Brooks PAK Files
	Encoding APF Files
	Transforming “raw” SHR Settings to APF File Settings
	Little Endian and Big Endian Helper Functions
	Brooks Palette to APF Palette Helper Function

	The UnPackBytes() Function
	Decoding Packed SHR Files with UnPackBytes
	Test Results - Compatibility And Regression
	Test Results - Performance – Comparing Apples to Bananas
	Test Results - Mode3200 Files
	The Contenders - Not Your Father’s SHR Converter
	Test Results – Mode320 Files
	Comparing Apples to Apples

