
Introduction to Super Hi-Res in cc65

Chapter Five – More Super Hi-Res Pixel Graphics in cc65 - SHRFan

Table of Contents

Introduction to Super Hi-Res in cc65 .. 1
Chapter Five – More Super Hi-Res Pixel Graphics in cc65 - SHRFan 1
Table of Contents ... 1
Forward .. 3

And Now For Something Completely Different .. 3
History .. 4

The Early Years - 1985 .. 4
ART.PAS Source Listing ... 5

The 90’s ... 8
Y2K .. 8
Present Day – 2014 .. 8

Program Description .. 9
Adding Useless Features to a Useless Program ... 10

Saving a Screen Shot to a PIC File .. 11
Automatically Naming Screen Shot Files .. 12

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 1 of 27

“Hot Keys” during a Save .. 12
Getting An Automatic Name ... 12

SHRFan main() Program Organization ... 13
Settings .. 14

Double Pixels ... 15
Key Check .. 15
Serpent Length ... 16

SHRFan main() Program Listing ... 16
The Random Functions and the Functions That Use Them ... 19
Wandering Lines .. 21
Drawing Double Lines ... 24
Regenerating The Demo .. 25
Move Colors Left or Right ... 26

Additional Notes and Downloads .. 27

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 2 of 27

Forward

And Now For Something Completely Different

Now that we have learned something about Super Hi-Res (SHR) pixel graphics on the
Apple IIgs and have slapped together an SHR routine or two we probably know enough
about how pixel graphics work in SHR to do a little more than we did in our cc65
shrworld demo program in Chapter Three.

Shrworld was a lame demo. In this Chapter, to explore the potential of cc65’s SHR pixel
graphics capabilities further, we will be re-writing a somewhat less-lame demo called
SHRFan that has been around in one way or another for many years.

Among other things, we will add a routine to our demo that saves up to 100 SHR Screen
Shots to disk, and we’ll provide 2 resolutions; 320 x 200 with normal pixels or 160 x 200
with double-wide pixels. We’ll also add a routine to slide the colors in a palette from
side to side to instantly change the colors of lines already on the screen. And we’ll
provide some other user options to make SHRFan a little more interesting.

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 3 of 27

http://www.appleoldies.ca/cc65/docs/shr/shrworld.pdf

History

The Early Years - 1985

SHRFan is a new program written in cc65 for the Apple IIgs, but its origins predate the
Apple IIgs and its Super-Hi Res (SHR) display. The IIgs was announced on September
15, 1986 but wasn’t available until 1987. By 1986 Turbo Pascal (TP), based on the Blue
Label Pascal Compiler written in 1981 by Anders Hejlsberg, was already on its 3rd

release. Version 1 of TP in 1983 included Apple II’s equipped with a CP/M 80 Microsoft
SoftCard. After TP’s success Bill Gates couldn’t understand why Microsoft’s stuff was
so slow and he would yell at Greg Whitten, Microsoft’s director of Programming
Languages, for half an hour at a time. The release of TP version 3 for the IBM-PC
included a sample graphics program called ART.PAS Version 1.00A written March 3,
1985, which ran in the 320 x 200 x 4 color CGA graphics mode. The author of ART.PAS
is Unknown. No credits or Copyright notices appear in the source code which simply
described itself as an “ART DEMONSTRATION PROGRAM”. Maybe it was written by
Frank Borland himself.

SHRFan is based on ART.PAS. The source code for ART.PAS is listed below:

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 4 of 27

http://edn.embarcadero.com/article/20283
http://en.wikipedia.org/wiki/Turbo_Pascal

ART.PAS Source Listing

Program ArtExample;
{
 ART DEMONSTRATION PROGRAM Version 1.00A
 This program demonstrates the use of color graphics
 using TURBO PASCAL on the IBM PC and true compatibles
 with a color graphics adapter.
 INSTRUCTIONS
 1. Compile and run this program using the TURBO.COM
 compiler.
 2. Type <ESC> to exit the program, any other key to
 regenerate the screen.
}
const
 MemorySize = 150;
var
 X1, X2, Y1, Y2,
 CurrentLine,
 ColorCount,
 IncrementCount,
 DeltaX1, DeltaY1, DeltaX2, DeltaY2,
 I, Color: integer;
 Ch: char;
 Line: array [1..MemorySize] of record
 LX1, LY1: integer;
 LX2, LY2: integer;
 LColor: integer;
end;
procedure Check;
var
 ch: char;
begin
 writeln('This program will only work if you have the color graphics
adapter installed');
 write('Continue Y/N ');
 repeat
 read (Kbd,Ch)
 until Upcase(Ch) in ['Y','N', #27];
 if Upcase(Ch) in ['N', #27] then
 Halt;
end;
procedure Init;
begin
 for I := 1 to MemorySize do
 with Line[I] do
 begin
 LX1 := 0;
 LX2 := 0;
 LY1 := 0;
 LY2 := 0;
 end;

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 5 of 27

 X1 := 0;
 Y1 := 0;
 X2 := 0;
 Y2 := 0;
 CurrentLine := 1;
 ColorCount := 0;
 IncrementCount := 0;
 Ch := ' ';
 GraphColorMode;
 Palette(2);
 Color := 2;
 gotoxy(1,25);
 write('Press any key to regenerate, ESC to stop');
end;
procedure AdjustX(var X,DeltaX: integer);
var
 TestX: integer;
begin
 TestX := X+DeltaX;
 if (TestX<1) or (TestX>320) then
 begin
 TestX := X;
 DeltaX := -DeltaX;
 end;
 X := TestX;
end;
procedure AdjustY(var Y,DeltaY: integer);
var
 TestY: integer;
begin
 TestY := Y+DeltaY;
 if (TestY<1) or (TestY>190) then
 begin
 TestY := Y;
 DeltaY := -DeltaY;
 end;
 Y := TestY;
end;
procedure SelectNewColor;
begin
 Color := Random(3)+1;
 ColorCount := 5*(1+Random(10));
end;
procedure SelectNewDeltaValues;
begin
 DeltaX1 := Random(7)-3;
 DeltaX2 := Random(7)-3;
 DeltaY1 := Random(7)-3;
 DeltaY2 := Random(7)-3;
 IncrementCount := 4*(1+Random(9));
end;
procedure SaveCurrentLine;
begin
 with Line[CurrentLine] do
 begin
 LX1 := X1;
 LY1 := Y1;

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 6 of 27

 LX2 := X2;
 LY2 := Y2;
 LColor := Color;
 end;
end;
procedure Regenerate;
var
 I: integer;
begin
 NoSound;
 GraphColorMode;
 Palette(2);
 for I := 1 to MemorySize do
 with Line[I] do
 Draw(LX1,LY1,LX2,LY2,LColor);
 gotoxy(1,25);
 write('Press any key to continue, ESC to stop');
 read(Kbd,Ch);
end;
procedure WanderingLines;
begin
 repeat
 repeat
 with Line[CurrentLine] do
 Draw(LX1,LY1,LX2,LY2,0);
 if ColorCount=0 then SelectNewColor;
 if IncrementCount=0 then SelectNewDeltaValues;
 AdjustX(X1,DeltaX1);
 AdjustY(Y1,DeltaY1);
 AdjustX(X2,DeltaX2);
 AdjustY(Y2,DeltaY2);
 Draw(X1,Y1,X2,Y2,Color);
 SaveCurrentLine;
 CurrentLine := Succ(CurrentLine);
 if CurrentLine>MemorySize then CurrentLine := 1;
 ColorCount := Pred(ColorCount);
 IncrementCount := Pred(IncrementCount);
 until KeyPressed;
 read(Kbd,Ch);
 if Ch <> #27 then
 begin
 Regenerate;
 gotoxy(1,25);
 write('Press any key to regenerate, ESC to stop');
 end;
 until Ch = #27;
end;
begin
 ClrScr;
 Check;
 Init;
 WanderingLines;
 TextMode;
end.

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 7 of 27

The 90’s

I had great fun with my graphics programming in the 1990’s while ART.PAS sat
forgotten on a floppy in the corner of my computer lab for a while. When I first got into
writing Screen Savers for Windows 3.1, I had “Berkley After Dark” installed on both
my Mac IIci and on my 486 Multi-Media Windows machine, networked with my BBS in
the other corner of my computer lab.

At some point in those years I crossed the room and resurrected ART.PAS from its
floppy, and created an After Dark Screensaver for Windows 3.1 based on ART.PAS
which I called VGAFan. One thing led to another and because I didn’t like the fact that I
was using some third-party run-time, I got busy and rewrote VGAFan in Microsoft C.

Around about 1996 I had the bright idea of writing a promotional “six pack” of screen
savers in my off-hours but the company that I was working for at the time wasn’t
interested in using them so in 1997, wishing to be rid of the burden of this “six pack”, I
created a free screensaver download page on one of my websites and within a month I
had almost 20,000 “hits”. I called the “six pack” VGAFan after my first screensaver.

These were really “polished-up” too and VGAFan and all the rest were quite good for
Windows 3.1 and only ran in 16 colors. But they were free and came with source.

Y2K

I didn’t think about VGAFan and ART.PAS for a while until after the turn of the century
rolled around. Then one day, I saw my VGAFan Screensaver running on a computer
while visiting somebody, and they told me that it was part of a distributed processing
experiment of some kind. Futher investigation revealed that in the year 2000, a fellow by
the name of Elmar Krieger with the Center for Molecular and Biomolecular Informatics
(CMBI) at the Katholic University in Nijmegen, Netherlands had modified VGAFan as
the Windows component for the “Models at Home” experiment, which was later
published in BioInformatics 18 by Oxford Press. ART.PAS certainly gets around!

Not to be outdone, but knowing that Windows 3.1 was long dead, after a while I wrote
yet another version of VGAFan, this time as a Win32 screensaver for Windows XP, again
with many additional features and no longer limited to 16 colors. That version of
VGAFan aka ART.PAS is still available for download from my ClipShop Website with
source of course. And through the death of Windows XP I have never thought much
about VGAFan or ART.PAS again until just the other week when I was rummaging
around for pixel graphics code to use in cc65 programs and remembered VGAFan.

Present Day – 2014

SHRFan was written by merging the code from the latest Win32 version of VGAFan
together with the cc65 SHR routines that I have been working-on lately. Naturally the
ART.PAS program has been heavily modified through its various generations as

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 8 of 27

http://www.clipshop.ca/
http://yasara.org/modelsd2.htm
http://en.wikipedia.org/wiki/After_Dark_(software)

VGAFan. Now due to the limitations of the SHR display it has devolved somewhat from
the Win32 version of VGAFan back to 16 colors again, and due to the SHR screen
resolution of 320 x 200 it also bears more resemblance to ART.PAS in screen metrics and
other respects than VGAFan ever did. The Timer CallBacks and the Event Handlers are
gone; it is no longer a GUI Application, and it launches in text mode just like ART.PAS
but it has also retained the settings and the “flavour” of VGAFan. The untrained eye
might even think that VGAFan descended from SHRFan and not the other way around.

However SHRFan also has some new settings targeted at the SHR display. It is not
merely a port of ART.PAS but still retains the same purpose as ART.PAS; SHRFan is
totally useless for any real practical purpose as ART.PAS always was.

Like ART.PAS, SHRFan is an “ART DEMONSTRATION PROGRAM” with the
additional similarity of demonstrating the use of a compiler to write a graphics program
for a vintage computer of the 1980’s. Whether that is useful or practical in 2014 is
unlikely but it is fun. It is not productivity software but little is these days.

So now you know some of the history behind the SHRFan demo program, and how it
came to be. I can hardly claim ownership of ART.PAS and its descendents, but they’ve
certainly lived with me a long time and we have grown old together, and with a little luck
and if the Apple II is truly Forever, we may even outlive Frank Borland although he still
seems to be alive and kicking at Embarcadero.

Bill Buckels
bbuckels@mts.net
July 2014

Program Description

This program creates a Color Serpent Fan on a black background which bounces-off the
sides of the viewport, and changes color and shape randomly.

The color fan can contain up to 200 lines of "Serpent Length". (This is a user-definable
setting.)

Before a new line is drawn, the oldest line in the fan is redrawn in black, which
effectively erases the "tail" of the serpent fan and "cross-hatches" over-top of any line
segments that share the same area on the screen creating a 3d effect.

By erasing the oldest line in the fan, we keep the screen from becoming too cluttered and
eventually filling-up with broken lines.

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 9 of 27

mailto:bbuckels@mts.net

Adding Useless Features to a Useless Program

In today’s world, the most useless of things seem widely coveted; Beer for example.
There was a time when a man could drink copious amounts of beer and stagger down the
street (with other large hairy men without tatoos). The value of Beer was measured by
Volume. Today’s men seem to value the useless sipping of small amounts of beer brewed
to exact recipes created with apps that run on their telephones, with a taste that is hardly
swillable at best. Staggering down the street is generally frowned upon today, but there
was a time, especially on payday when men staggering through town at closing time or
supper time raised nary an eyebrow even from the staunchest abstainer, and when
programming of computers was measured in Volume and Usefulness.

Today’s programs are to yesterday’s programmer, like a twitter tweet is to a technical
writer. So a program like SHRFan is probably far ahead of its time considering that it was
conceived decades ago when useful things like swillable beer still had value and when
programs like SHRFan were as useless as 8” floppies are today.

One of the most useless features that can be added to a graphics demo is the ability to
save screen shots. SHRFan can save up to a hundred of them, automatically naming with
no two the same either in name or appearance, and no way to tell which is which. Since
these are 32K in size and are saved on the modest disk space of the IIgs, I stopped short
of adding a feature for making movies of each frame. Saving pictures of lines when one
can run a demo to see the same lines would seem to have much value to today’s users of
computers who save copious amounts of large pictures but drink very little beer.

The next thing I expect to see is somebody using this program to save a bunch of screens
and winning a retro-art contest somewhere with them. This seems the same as using

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 10 of 27

PhotoShop and a Phone Camera to win a photo contest. Beer on the other hand was never
considered ART. Today’s amazing talent seems to swill commodities of much less useful
but more highly coveted consumables. Like Apple II Programming which is arguably as
useless as small amounts of beer and large amounts of pictures of colored lines (or
pictures of your last vacation), this feature probably should have been added to SHRFan’s
early ancestor ART.PAS, but back then useless things had fewer working parts.

Saving a Screen Shot to a PIC File

Let’s take a brief look at how we save the Super Hi-Res Screen Memory to a $C1 $0000
PIC file (this is simply the reverse of loading a PIC file):

/* -- */
/* save the SHR screen to disk when the S key is pressed. */
/* -- */
/* a simple $C1 $0000 SHR image save routine */
int picsave(char *name)
{
 FILE *fp;
 int i, c, status = ERR_WRITEPIXELS;
 unsigned src = 0x2000; /* set src to scanline 0 */
 extern unsigned char _filetype;
 extern unsigned _auxtype;
 /* remove file if it already exists */
 fp = fopen(name,"rb");
 if (fp != NULL) {
 fclose(fp);
 remove(name);
 }
 /* set file type to Screen Image */
 _filetype = 0xC1;
 _auxtype = 0x0000;
 fp = fopen(name,"wb");
 if (fp == NULL) return ERR_OPEN;
 for (;;) {
 /* write image data - 32000 bytes */
 for (i=0;i<4;i++) {
 /* move to main memory */
 auxtomain(src,src+7999,0x2000);
 c = fwrite((char *)0x2000,1,8000,fp);
 if (c != 8000)break;
 src += 8000;
 }
 if (c!=8000) break;
 /* write scbs and palette - 768 bytes */
 status = ERR_WRITEPALETTE;
 auxtomain(src,src+767,0x2000);
 c = fwrite((char *)0x2000,1,768,fp);
 if (c!=768) break;
 status = SUCCESS;
 break;
 }

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 11 of 27

 /* close file and remove if a write error occurred */
 /* likely out of disk space */
 fclose(fp);
 if (status != SUCCESS) remove(name);
 return status;
}

The code above is very straight-forward and also demonstrates how we set the ProDOS
File Type and Auxiliary Type when a file is created in cc65. We did the same thing when
we created our PICLIST in our picshow SHR demo Slide Show program.

Automatically Naming Screen Shot Files

“Hot Keys” during a Save

There is no point in typing file names anymore. Or really in typing much of anything if
one can’t even see text on a screen without a magnifying glass. So for the modern user
SHRFan offers a single key press, the ‘S’ key, to save a Screen Shot. Think of it as the
‘SS’ key if SHRFan is not paused, because if SHRFan is not paused first by using the
Space Bar, the first ‘S’ that is typed will pause the screen just like the Space Bar, and the
user can then change the colors by using the Arrow Keys or abandon the file altogether.

To abandon a save in progress, the user can either press the Space Bar and the demo will
resume where it left off, or the user can press the RETURN key and the demo will
regenerate with a different “Fan Serpent”.

If the user is satisfied with what he sees, then pressing ‘S’ during a pause will save the
Screen Shot to a PIC file provided there is no problem saving. If there is a problem
saving, SHRFan never stops and only lets the user know that there is a problem at the end
of the program. This is how things like Windows Updates work today. Many years ago
standards like the CUI (Common User Interface) defined the behaviour of programs, but
with the advent of systems that eventually looked like telephones, desktop ergomics has
been replaced by thumbernomics and pinching of telephone screens. But with mnemonic
key presses and automatic naming of useless files, SHRFan is certain to please even the
most modern of user. 

Getting An Automatic Name

/* check for existing saved screen snapshot files
 we are supporting 100 using automatic naming
 this is a first-fit so if there are gaps in the
 existing file names the gaps will be filled */
int GetNextPicName(char *name)
{
 FILE *fp;
 int i;
 /* SHRFAN00.SHR to SHRFAN99.SHR */
 for (i = 0; i < 100; i++) {
 sprintf(name,"SHRFAN%02d.SHR",i);
 fp = fopen(name,"rb");

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 12 of 27

http://www.appleoldies.ca/cc65/programs/shr/picshow.zip

 if (fp == NULL) return SUCCESS;
 fclose(fp);
 }
 /* if we already have 100 files that's enough */
 name[0] = (char)0;
 return ERR_EXCESSIVE;
}

The code above is called from the key press loop in the main() program to create an
automatic name during a screen shot save. If successful it leaves the name that it created
in the buffer, and returns 0. Otherwise it zeroes the filename buffer and returns an error:

SHRFan main() Program Organization

The main() program is organized like a Windows Screensaver, except that it is
procedural and not event driven. In today’s world it is like a VB.NET program compared
to a C++ program. Very modern indeed, because the world seems to not code much in C+
+ anymore. Fortunately for the cc65 programmer, modern ISO C is much nicer than
either language to write small programs like this in. So is Ansi C (MinGW etc) but
unfortunately a programmer can’t get so close to his video hardware on a modern
computer so easily these days which is one of the reasons the Apple II is forever.

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 13 of 27

Settings

For the modern user, we have set-up a number of defaults, and in fact every setting has a
default, so the RETURN key can be used by every modern user at every entry on both
settings screens, and hopefully these modern users will pause long enough to read what
the key presses can be used for. No problem if they don’t though except for one thing.
The only way out of this thing is by pressing the ESC key after SHRFan starts the demo.
Other than that they can hit keys at random like most modern users.

For the serious user there are options. And for the others including the modern user, the
display is in large print so it is readable on a tiny phone or tablet screen; a true marvel of
modern design. In fact these settings screens are much more readable than the settings
screens on the screen savers from which they descended… much more “in-synch” with
the users of today’s useless apps on small screened telephones.

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 14 of 27

Double Pixels

The logical resolution above is coarser than the SHR’s 320 x 200 display resolution… it
is 160 x 200 pixels. On the first settings screen we responded “Y” when we asked if we
wanted double pixels. When we draw a line using single pixels you will recall from
previous Chapter Three that we must double-buffer the packed byte containing 2 pixels,
and do some additional work to remove the previous pixel and then replace it with the
new pixel while we leave the adjacent pixel alone.

But when we go to double pixels we just replace the pixel pair that is already on the SHR
screen with the pixel pair of double pixels in the new color. We don’t need to worry
about preserving adjacent pixels. This is a quicker process; much fewer operations.

If you run SHRFan on a quicker IIgs like an 8 MHZ machine, it’s almost fast enough for
single pixels, but a slower machine may want double pixels.

Key Check

The Key Check setting is a yield setting.

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 15 of 27

The setting for number of lines is used to gain some additional performance by drawing
lines in groups before checking for a key press.

It’s a trade-off like trying to see the telephone screens of today instead of the decent
monitors of days gone by. If you are a modern user and wait for more than 5 lines it will
seem to take forever. But if you want to run this thing a Serpent at a time just make the
settings for Serpent Length and Key Check the same. If you want to save screens or
change colors set it to 1 or 2. The default is 2 so just press RETURN and you should be
good to go.

Serpent Length

The serpent length setting allows from 50 – 200 lines in the fan. By default this setting is
150 lines.

Until now I have not explained what a Serpent Fan is. To begin with it’s the state of an
aggregate line object of a fixed number of lines that draws itself twice. When the line is at
the head of the Color Serpent it draws in color and when it reaches the end of the tail it
draws in black, which overwrites the colored copy of the line and a new line takes its
place and becomes the head of the Color Serpent as the serpent continues to wind its
fanned segments around the screen.

So when we selected a Serpent Length at the settings screen and asked for 200 lines
instead of the default of 150 we got a longer and nicer Color Serpent than a modern user
who just pressed RETURN in a hurry and accepted the defaults.

SHRFan main() Program Listing

int main(void)
{
 unsigned char ch, buf[40];
 int status = SUCCESS;
 /* initialize text mode. stay in 40 column mode. */
 texton();
 clrscr();
 /* initialize empty palette and scb's */
 initbuffers();
 /* clear keyboard buffer */
 while (kbhit() != 0) {
 cgetc();
 random();
 }
 /* settings screen */
 puts("shrfan(C) Bill Buckels 2014.");
 puts("--------------------------------------");
 puts("Settings - press RETURN for defaults:");
 puts("Serpent Length Default: 150 Lines");
 puts("Lines Between KeyCheck: 2 Lines");
 puts("Pixel Size Default : Single Pixels");
 puts("--------------------------------------");

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 16 of 27

 puts("Enter Serpent Length (50-200):");
 gets(buf);
 wSerpentLength = (WORD) atoi(buf);
 if (wSerpentLength < MEMORYMIN)
 wSerpentLength = MEMORYMEDIUM;
 else if(wSerpentLength > MEMORYSIZE)
 wSerpentLength = MEMORYMEDIUM;
 puts("Enter Keycheck (1 or more Lines):");
 gets(buf);
 wNumberOfLines = (WORD) atoi(buf);
 if (wNumberOfLines < MINLINES)
 wNumberOfLines = DEFLINES;
 else if (wNumberOfLines > wSerpentLength)
 wNumberOfLines = wSerpentLength;
 puts("Do you want Double Pixels (Y/N)?");
 while (kbhit() == 0) random();
 ch = toupper(cgetc());
 if (ch == 'Y') wXBound = XPAIR;
 /* clear keyboard buffer */
 while (kbhit() != 0) {
 cgetc(); random();
 }
 /* KeyPress Info and Palette Selection Screen */
 clrscr();
 puts("shrfan(C) Bill Buckels 2014.");
 puts("--------------------------------------");
 puts("Demo Keys:");
 puts("SPACEBAR - Pause-Resume Toggle");
 puts(" S - Save Paused Screen SHRFANxx.SHR");
 puts("ARROW Keys - Move Colors Left or Right");
 puts("RETURN Key - Refresh and Reset");
 puts("ESC Key - Exit");
 puts("--------------------------------------");
 puts("Select a 16-color palette:");
 puts("1 - Kegs32 (default)");
 puts("2 - CiderPress");
 puts("3 - Old AppleWin");
 puts("4 - New AppleWin");
 while (kbhit() == 0) random();
 ch = cgetc();
 /* turn shr on */
 shgron();
 /* now that the shr display is in auxiliary memory */
 /* clear the palette and point all the scbs to the
 first palette */
 clearpalette();
 clearscbs();
 /* clear the shr screen to black */
 clear320(LOBLACK);
 /* set the palette that the user has selected */
 switch(ch) {
 case '2' : paletteptr = (unsigned char *)&rgbciderpress[0];
 break;
 case '3' : paletteptr = (unsigned char *)&rgbawinold[0];break;
 case '4' : paletteptr = (unsigned char *)&rgbawinnew[0];break;
 default : paletteptr = (unsigned char *)&rgbkegs32[0];break;
 }

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 17 of 27

 setpalette(paletteptr,0);
 /* save a copy of the user's palette selection
 for resetting if needed */
 memcpy(&rgbsaved[0],&paletteptr[0],48);
 /* clear keyboard buffer */
 while (kbhit() != 0) {
 cgetc(); random();
 }
 for (;;) {
 WanderingLines();
 if (kbhit() != 0) {
 ch = toupper(cgetc());
 /* color change if arrow key is pressed */
 ShufflePalette(ch);
 while (kbhit() != 0) {
 cgetc(); random();
 }
 if (ch == ESCAPE) break;
 else if (ch == RETURNKEY)ReGenerate();
 else if (ch == SPACEBAR || ch == 'S') {
 /* if they pressed the S key before pausing they will
 need to press it again to save */
 for (;;) {
 while (kbhit() == 0) random();
 ch = toupper(cgetc());
 /* the spacebar and the return key have the same effect
 when paused both resume but pressing the return key
 clears the screen and regenerates the demo */
 if (ch == SPACEBAR) break;
 else if (ch == RETURNKEY) {
 ReGenerate(); break;
 }
 else if (ch == 'S') {
 /* not reporting errors here */
 /* if we had an error saving before just skip this */
 if (status == SUCCESS)
 status = GetNextPicName((char *)&buf[0]);
 if (status == SUCCESS) status = picsave(buf);
 }
 while (kbhit() != 0) {
 cgetc(); random();
 }
 if (ch == 'S') break;
 /* when paused also allow color changes */
 ShufflePalette(ch);
 }
 }
 }
 }
 /* clear the palette and scbs then
 turn shroff and re-initialize text mode */
 clearpalette();
 clearscbs();
 shgroff();
 texton();
 clrscr();

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 18 of 27

 /* report the error if a problem saving the screenshot */
 if (status != SUCCESS) {
 switch(status) {
 case ERR_OPEN:
 printf("Error Opening %s\n",buf); break;
 case ERR_WRITEPIXELS:
 case ERR_WRITEPALETTE:
 printf("Error Writing %s\n",buf); break;
 case ERR_EXCESSIVE:
 puts("Error: 100 ScreenShot Limit Exceeded!"); break;
 default: printf("Unknown Error: %d!\n",status);
 }
 cgetc();
 }
 /* and exit */
 return SUCCESS;
}

Well that’s certainly not as simple a main() program as the other main() programs in the
previous chapters! But when we back-read the code above from the forever(;;) loop and
WanderingLines() to the point where we clear the SHR palette and turn SHR off, and
keep in mind that the rest of the code is just setting-up then cleaning-up afterwards, we
can see that this whole program is just an event loop that checks for key presses and
draws some lines then checks for key presses etc.

Not so very different from a Screen Saver. Very modern indeed! 

Let’s have a look at some of the Helper Functions that are called in our event loop.

The Random Functions and the Functions That Use Them

The SHRFan program is entirely dependent on using random values. After realizing the
random number generator in cc65 wasn’t working for us and kept returning a one, we
grabbed another one off the web to do this demo.

/* -- */
/* local random number generator to overcome the lack of a usable */
/* random number generator in cc65... */
/* -- */
/* http://stackoverflow.com/questions/7602919/how-do-i-generate-random-
numbers-without-rand-function */
unsigned RandomSeed = (unsigned)0xACE1;
unsigned random()
{
 unsigned bit = ((RandomSeed >> 0) ^ (RandomSeed >> 2) ^
 (RandomSeed >> 3) ^ (RandomSeed >> 5)) & 1;
 RandomSeed = (RandomSeed >> 1) | (bit << 15);
 return RandomSeed;
}

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 19 of 27

/* --- */
/* RandomRange */
/* returns a random number in a usuable range (1 to MaxValue) */
/* args */
/* MaxValue - the highest number we want */
/* --- */
int RandomRange(int iMaxValue)
{
 int iRetVal;
 do {
 /* get random number */
 iRetVal = random();
 /* get a positive value */
 if (iRetVal < 0) iRetVal *= -1;
 } while(iRetVal < 1);
 /* use modulus of MaxValue if not in range */
 if (iRetVal > iMaxValue)
 iRetVal = (iRetVal%iMaxValue)+1;
 return iRetVal; /* return a value in range */
}
/* -- */
/* select new delta values - for geometric fan effect */
/* delta values are added during plotting to increment or */
/* decrement the end points on the lines to create a fan effect */
/* -- */
void SelectNewDeltaValues()
{
 iDeltaX1 = RandomRange(DELTAPLUS)-DELTAMINUS;
 iDeltaY1 = RandomRange(DELTAPLUS)-DELTAMINUS;
 iDeltaY2 = RandomRange(DELTAPLUS)-DELTAMINUS;
 iDeltaX2 = RandomRange(DELTAPLUS)-DELTAMINUS;
 /* the increment count controls how far each fan will travel */
 /* before it is replaced with a different geometry */
 iIncrementCount = (DELTAMULTIPLIER)*(1+RandomRange(DELTASEED));
}
/* --- */
/* select new color */
/* called at intervals during plotting to select another color */
/* --- */
void SelectNewColor()
{
 DrawColor = (unsigned char) RandomRange(HIGHESTCOLOR);
 /* determine how long we will run this color before reselecting */
 iColorCount = (DELTAMULTIPLIER+1)*(1+RandomRange(DELTASEED+1));
}

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 20 of 27

Wandering Lines

The function below is pretty standard in a graphics bounce algorithm that reverses
direction when it hits the side of the screen’s view port. We do something similar in
Chapter 4 in our shrbounce demo. This function is called from WanderingLines()
which is really the heart of SHRFan and this program.

/* -- */
/* adjust - bounds processing */
/* called to test and reverse x or y term during plotting */
/* -- */
void Adjust(int *iPosition, int *iDelta, int iBoundMax)
{
 int iTest;
 iTest = *iPosition + *iDelta;
 if ((iTest < 1) || (iTest > iBoundMax)) {
 iTest = *iPosition;
 *iDelta = -*iDelta;
 }
 *iPosition = iTest;
}

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 21 of 27

http://www.appleoldies.ca/cc65/docs/shr/b2sprite.pdf

The WanderingLines() code below draws the Serpent Fan. All those Random Number
Functions previously listed are called from here. When we set the Key Check value at the
start of SHRFan it sets the wNumberOfLines variable used below, and as previously
noted only 2 lines are drawn by default before we check our keyboard.

/* ----------------- */
/* wander the lines */
/* ----------------- */
void WanderingLines(void)
{
 WORD wCnt;
 for (wCnt = 0; wCnt < wNumberOfLines; wCnt++) {
 /* erase an old line (if any) before losing values */
 /* the line array is a ring buffer using FIFO to erase */
 /* the oldest line before drawing a new one */
 if (wXBound == XBOUND)
 line320(WanderLine[iCurrentLine].iLX1,
 WanderLine[iCurrentLine].iLY1,
 WanderLine[iCurrentLine].iLX2,
 WanderLine[iCurrentLine].iLY2,0);
 else
 doublewide320(WanderLine[iCurrentLine].iLX1,

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 22 of 27

 WanderLine[iCurrentLine].iLY1,
 WanderLine[iCurrentLine].iLX2,
 WanderLine[iCurrentLine].iLY2,0);
 /* end of color term so select a new color */
 if (iColorCount < 1) SelectNewColor();
 /* end of shape so get new values for our geometry */
 if (iIncrementCount < 1) SelectNewDeltaValues();
 /* get values for the current line */
 /* if we have collided with the sides */
 /* then change direction */
 Adjust(&iLX1, &iDeltaX1, wXBound);
 Adjust(&iLY1, &iDeltaY1, YBOUND);
 Adjust(&iLX2, &iDeltaX2, wXBound);
 Adjust(&iLY2, &iDeltaY2, YBOUND);
 /* -- */
 /* save the current line into the line structure */
 /* restored in black when required again */
 /* -- */
 WanderLine[iCurrentLine].iLX1 = iLX1;
 WanderLine[iCurrentLine].iLY1 = iLY1;
 WanderLine[iCurrentLine].iLX2 = iLX2;
 WanderLine[iCurrentLine].iLY2 = iLY2;
 WanderLine[iCurrentLine].color = DrawColor;
 if (wXBound == XBOUND)
 line320(WanderLine[iCurrentLine].iLX1,
 WanderLine[iCurrentLine].iLY1,
 WanderLine[iCurrentLine].iLX2,
 WanderLine[iCurrentLine].iLY2,
 WanderLine[iCurrentLine].color);
 else
 doublewide320(WanderLine[iCurrentLine].iLX1,
 WanderLine[iCurrentLine].iLY1,
 WanderLine[iCurrentLine].iLX2,
 WanderLine[iCurrentLine].iLY2,
 WanderLine[iCurrentLine].color);
 /* get ready for the next pass... and increment and decrement
 animation counters as required */
 iCurrentLine++;
 if (iCurrentLine > (int)wSerpentLength)
 iCurrentLine = 0;
 iColorCount--;
 iIncrementCount--;
 }
 return;
}

There that wasn’t so bad. Admittedly, ART.PAS is somewhat more straight forward, but
we really do get better ART from SHRFan. The code in either needs some study to wrap

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 23 of 27

around ones head. So we keep in mind when we study the code that we are bouncing a
line around like the bitmapped graphic we bounced in shrbounce.

Note in the code above we are calling one of two line drawing functions; line320() and
doublewide320(). We already know about line320() from Chapter Three. When we
selected Double Pixels at the start of SHRFan, logical horizontal resolution was changed
to 160 double pixels so doublewide320() is used to draw lines instead of line320().

Drawing Double Lines

The doublewide320() function below uses the same pixel pair plotting function that we
did in Chapter Three: putpairs320()

Using pairs of pixels to draw coarser lines gives us the advantage of not needing to read
from SHR screen memory, and isolate a pixel in the high or low nibble of a byte, then
update the byte, before writing. We therefore gain some speed on writing the byte, but
since we still have the code overhead of the rest of this our efficiency gain is limited, and
the coarser resolution may not be worth the sacrifice.

/* Bresenham Algorithm doublewide line drawing routine for SHR mode320
 resolution is 160 x 200 rather than 320 x 200 */
void doublewide320(int x1, int y1, int x2, int y2, unsigned char color)
{
 int dx, dy, sx, sy, err, err2;
 /* single pixel */
 if (x1 == x2 && y1 == y2) {
 putpairs320((unsigned)x1*2,(unsigned)y1,1,color);
 return;
 }
 /* vertical line */
 if (x1 == x2) {
 /* swap y co-ordinates if out of order */
 if (y1 > y2) {
 sy = y1;
 y1 = y2;
 y2 = sy;
 }
 x1 *= 2;
 y2++;
 while (y1 < y2) {
 putpairs320((unsigned)x1,(unsigned)y1,1,color);
 y1++;
 }
 return;
 }
 /* horizontal line */
 if (y1 == y2) {
 if (x1 > x2) {
 sx = x1;
 x1 = x2;
 x2 = sx;

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 24 of 27

 }
 sx = ((x2 + 1) - x1);
 putpairs320((unsigned)x1*2,(unsigned)y1,sx,color);
 return;
 }
 /* vector */
 if(x1 < x2) {
 dx = x2 - x1;
 sx = 1;
 }
 else {
 sx = -1;
 dx = x1 - x2;
 }
 if(y1 < y2) {
 sy = 1;
 dy = y2 - y1;
 }
 else {
 sy = -1;
 dy = y1 - y2;
 }
 err = dx-dy;
 for (;;) {
 putpairs320((unsigned)x1*2,(unsigned)y1,1,color);
 if(x1 == x2 && y1 == y2)break;
 err2 = err*2;
 if(err2 > (0-dy)) {
 err = err - dy;
 x1 = x1 + sx;
 }
 if(err2 < dx) {
 err = err + dx;
 y1 = y1 + sy;
 }
 }
}

Regenerating The Demo

When the RETURN key is pressed in main(), ReGenerate() is called to clear the screen
and to reset the Serpent Fan.

/* --- */
/* regenerate the demo when RETURN is pressed. */
/* --- */
void ReGenerate()
{
 int idx;
 /* start somewhere new each time */
 iLX1 = iLY1 = iLX2 = iLY2 = RandomRange(YBOUND);
 /* reset other values */
 iColorCount = iIncrementCount = iCurrentLine = NIL;
 /* zero-out previous line coordinates */

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 25 of 27

 for (idx = 0; idx < MEMORYMAX; idx++) {
 WanderLine[idx].color = 0;
 WanderLine[idx].iLX1 =
 WanderLine[idx].iLY1 =
 WanderLine[idx].iLX2 =
 WanderLine[idx].iLY2 = NIL;
 }
 random(); /* shake-it-up */
 /* clear screen and restore initial palette */
 clearpalette();
 clear320(LOBLACK);
 memcpy(&paletteptr[0],&rgbsaved[0],48);
 setpalette(paletteptr,0);
 /* good to go now! */
}

Move Colors Left or Right

When the arrow keys are pressed during the demo, the line colors 1-15 slide in the
direction of the arrow key. This causes our lines to instantly change to different colors;
some better, some worse. This is especially useless when we are paused and slide the
colors around before saving yet another screen of colored lines, quickly filling-up our
disk media. Modern users may enjoy this feature, because with hardly any effort, the
illusion that some activity of some value has occurred can be achieved. A pleasant day
spent using SHRFan in this manner may even result in a sense of satisfaction and
achievement, especially among the less artistic. 

/* --- */
/* slide colors 1-15 sideways when the ARROW keys are pressed. */
/* --- */
void ShufflePalette(char direction)
{
 random(); /* shake-it-up */
 switch(direction) {
 case RTARROW:
 case DNARROW:
 case '+': /* forward - leave black alone */
 memcpy(&rgbwork[0],&paletteptr[3],45);
 memcpy(&paletteptr[6],&rgbwork[0],42);
 memcpy(&paletteptr[3],&rgbwork[42],3); break;
 case LTARROW:
 case UPARROW:
 case '-': /* reverse - leave black alone */
 memcpy(&rgbwork[0],&paletteptr[3],45);
 memcpy(&paletteptr[3],&rgbwork[3],42);
 memcpy(&paletteptr[45],&rgbwork[0],3); break;
 default:
 return;
 }
 setpalette(paletteptr,0);
 /* good to go now! */
}

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 26 of 27

Additional Notes and Downloads

The SHRFan program comes complete with source code and a working disk image. This
document is only intended to provide an overview. In Chapter Three we covered the
basics of SHR Pixel Graphics in cc65 and looked at the SHR core routines.

I would recommend that you backread the previous chapters for info on those. This
document provides the additional notes that we need to write SHRFan using those same
core routines. If there is anything else to be learned from SHRFan I would be shocked
and amazed. But then I am not a modern user. 

SHR Pixel Graphics – Chapter 5 - SHRFan
Demo
Doc

http://www.appleoldies.ca/cc65/programs/shr/shrfan.zip
http://www.appleoldies.ca/cc65/docs/shr/shrfan.pdf

SHR Bitmapped Graphics – Chapter 4
B2Sprite Doc http://www.appleoldies.ca/cc65/docs/shr/b2sprite.pdf
B2Sprite Utility http://www.appleoldies.ca/cc65/programs/shr/b2sprite.zip
Bounce Demo http://www.appleoldies.ca/cc65/programs/shr/shrbounce.zip
Fraglode Demo http://www.appleoldies.ca/cc65/programs/shr/fraglode.zip

SHR Bit-Mapped Graphics – Chapter 1 and Chapter 2
Demo Image Loader: http://www.appleoldies.ca/cc65/programs/shr/piclode.zip
Demo SlideShow: http://www.appleoldies.ca/cc65/programs/shr/picshow.zip
SHR Pixel Graphics – Chapter 3
Demo
Doc

http://www.appleoldies.ca/cc65/programs/shr/shrworld.zip
http://www.appleoldies.ca/cc65/docs/shr/shrworld.pdf

DLGR Bit-Mapped Graphics
Demo http://www.appleoldies.ca/cc65/programs/dlgr/dloshow.zip
Doc http://www.appleoldies.ca/cc65/docs/dlgr/dloshow.pdf
DLGR Pixel Graphics
Demo http://www.appleoldies.ca/cc65/programs/dlgr/dlodemo.zip
Doc http://www.appleoldies.ca/cc65/docs/dlgr/dlodemo.pdf
DHGR Bit-Mapped Graphics
Demo http://www.appleoldies.ca/cc65/programs/dhgr/dhishow.zip
Doc http://www.appleoldies.ca/cc65/docs/dhgr/dhishow.pdf
DHGR Pixel Graphics
Demo http://www.appleoldies.ca/cc65/programs/dhgr/dhiworld.zip
Doc http://www.appleoldies.ca/cc65/docs/dhgr/dhiworld.pdf
Other No-Slot Clock (not Graphics)
Demo http://www.appleoldies.ca/cc65/programs/REALTIME.zip

7/31/2014 Chapter Five – More Super Hi-Res Pixel Graphics in cc65 Page 27 of 27

http://www.appleoldies.ca/cc65/programs/REALTIME.zip
http://www.appleoldies.ca/cc65/docs/dhgr/dhiworld.pdf
http://www.appleoldies.ca/cc65/programs/dhgr/dhiworld.zip
http://www.appleoldies.ca/cc65/docs/dhgr/dhishow.pdf
http://www.appleoldies.ca/cc65/programs/dhgr/dhishow.zip
http://www.appleoldies.ca/cc65/docs/dlgr/dlodemo.pdf
http://www.appleoldies.ca/cc65/programs/dlgr/dlodemo.zip
http://www.appleoldies.ca/cc65/docs/dlgr/dloshow.pdf
http://www.appleoldies.ca/cc65/programs/dlgr/dloshow.zip
http://www.appleoldies.ca/cc65/docs/shr/shrworld.pdf
http://www.appleoldies.ca/cc65/programs/shr/shrworld.zip
http://www.appleoldies.ca/cc65/programs/shr/picshow.zip
http://www.appleoldies.ca/cc65/programs/shr/piclode.zip
http://www.appleoldies.ca/cc65/programs/shr/fraglode.zip
http://www.appleoldies.ca/cc65/programs/shr/shrbounce.zip
http://www.appleoldies.ca/cc65/programs/shr/b2sprite.zip
http://www.appleoldies.ca/cc65/docs/shr/b2sprite.pdf
http://www.appleoldies.ca/cc65/docs/shr/shrfan.pdf
http://www.appleoldies.ca/cc65/programs/shr/shrfan.zip

	Introduction to Super Hi-Res in cc65
	Chapter Five – More Super Hi-Res Pixel Graphics in cc65 - SHRFan
	Table of Contents
	Forward
	And Now For Something Completely Different

	History
	The Early Years - 1985
	ART.PAS Source Listing

	The 90’s
	Y2K
	Present Day – 2014

	Program Description
	Adding Useless Features to a Useless Program
	Saving a Screen Shot to a PIC File
	Automatically Naming Screen Shot Files
	“Hot Keys” during a Save
	Getting An Automatic Name

	SHRFan main() Program Organization
	Settings
	Double Pixels
	Key Check
	Serpent Length

	SHRFan main() Program Listing
	The Random Functions and the Functions That Use Them
	Wandering Lines
	Drawing Double Lines
	Regenerating The Demo
	Move Colors Left or Right

	Additional Notes and Downloads

