
Displaying Apple II Double Lo-Res Pixel Graphics in a cc65 C Program

Table of Contents

Displaying Apple II Double Lo-Res Pixel Graphics in a cc65 C Program 1
Table of Contents ... 1
Introduction .. 3
DLODEMO Program Summary .. 4
DLGR Core Routines ... 4

More than a Demo ... 4
Building DLGR cc65 SYS Programs .. 4
DLGR Itself .. 5

Double-Res Mode .. 5
Apple II Graphics in General ... 5
Graphics Programming in General .. 5

Getting Started in DLGR Pixel Graphics ... 6
Auxiliary and Main Memory ... 6
Setting Video Modes .. 7
Lo-Res “Screen Holes” and Screen Memory ... 8
Base Address Tables .. 9

Text Screen Base Address Table ... 9
DLGR Graphics Screen Base Address Table .. 10

DLGR Colors ... 10
Remapping Main Colors to Auxiliary Colors .. 10

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 1 of 46

16 Colors – 4 Bits Per Pixel ... 11
2 Vertical Pixels Per Byte .. 11
Screen Resolution – 80 x 48 (Full Graphics) or 80 x 40 (Mixed Mode) 11

Mixed Text and Graphics ... 12
Font Routines ... 14

The Extended Aztec C65 Bitmapped Font .. 14
The “Tom Thumb” Font .. 16

Graphics Primitives in DLGR .. 19
Does Pixel Size Matter? ... 19
Calculating Pixel Position .. 19

Proportion and Aspect Ratio .. 19
Precision Constraints ... 20
Achieving a Reasonable Compromise .. 21

Drawing Circles in DLGR ... 23
Integer Algebra .. 24

Drawing Equilateral Triangles in DLGR ... 26
Drawing Lines in DLGR .. 27

Plotting a Pixel in DLGR ... 28
Setting the DLGR Pixel Color ... 29
Drawing Horizontal Lines .. 29
Drawing Vertical Lines .. 30
Plotting a Pixel in DLGR – Alternate Method ... 31

Drawing Squares in DLGR .. 32
Drawing Boxes in DLGR ... 33
Line Drawing Scripts in DLGR ... 35
Dlodemo Program Organization .. 37

Helper Functions .. 37
Helper Function dloboxes() ... 38
Helper Function dloworld() ... 40
Readability Considerations .. 41
Helper Function doublerod() .. 42

Main Program .. 44
Additional Notes .. 45

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 2 of 46

Introduction

This document is about a Demo Program (called “dlodemo”) written in C (and compiled
using cc65) that plots Double Lo-Res (DLGR) Pixel Graphics on the Apple //e. An earlier
version of dlodemo was originally distributed in 2013 as an Aztec C65 demo.

Double Resolution Graphics modes were not available until after 1983 when the second
run of the Apple IIe came along, and even then, neither of these modes was directly
supported by AppleSoft BASIC. Until then, only 2 graphics modes (Lo-Res and Hi-Res)
could be used. Lo-Res Graphics Mode for the Apple II is such a coarse resolution that it
is unsuitable for much more than a medium for very primitive graphics demos or similar
programs. When DLGR came-along, doubling-up the horizontal resolution to 80 pixels x
48 rasters made it (barely) possible to display more recognizable Lo-Res type graphics.

Like AppleSoft BASIC, cc65 does not provide “built-in” support for double resolution
graphics mode (through cc65’s tgi drivers), but also like in AppleSoft BASIC or in 6502
Assembly code, DLGR can be used programmatically in a C program compiled using
cc65. In 2010, Oliver Schmidt kindly ported some of my Lo-Res core routines from
Aztec C65 to cc65, and, after some minor changes, these provide the basis for this demo.

Download dlodemo here: http://www.appleoldies.ca/cc65/programs/dlgr/dlodemo.zip

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 3 of 46

http://www.appleoldies.ca/cc65/programs/dlgr/dlodemo.zip

DLODEMO Program Summary

When the dlodemo program starts, a title screen is drawn then the program waits for a
key press. A series of graphics primitives follows, then line drawing routines, and finally
a kaleidoscope is displayed, until ESC is pressed. Then dlodemo exits to ProDOS. But
“under the hood”, a little more is happening.

DLGR Core Routines

More than a Demo

The dlodemo program is more than a demo; it is a prototype for the ongoing porting of
Aztec C65’s graphics routines, and their refinement and development for extending
cc65’s support for the Apple II Graphics Modes that are not currently directly supported
by cc65. Since cc65 directly supports only two Apple II Graphics modes (LGR and
HGR) through cc65 tgi drivers, and since cc65’s direct support for Apple II bit-mapped
graphics does not exist, this overall project is quite large and extensive.

The following documents discuss what I have done so far towards the above-stated goals
and the accompanying demos provide cc65 source code and working disk images:

DLGR Bit-Mapped Graphics
Demo http://www.appleoldies.ca/cc65/programs/dlgr/dloshow.zip
Doc http://www.appleoldies.ca/cc65/docs/dlgr/dloshow.pdf
DLGR Pixel Graphics
Demo http://www.appleoldies.ca/cc65/programs/dlgr/dlodemo.zip
Doc http://www.appleoldies.ca/cc65/docs/dlgr/dlodemo.pdf
DHGR Bit-Mapped Graphics
Demo http://www.appleoldies.ca/cc65/programs/dhgr/dhishow.zip
Doc http://www.appleoldies.ca/cc65/docs/dhgr/dhishow.pdf
DHGR Pixel Graphics
Demo http://www.appleoldies.ca/cc65/programs/dhgr/dhiworld.zip
Doc http://www.appleoldies.ca/cc65/docs/dhgr/dhiworld.pdf

Building DLGR cc65 SYS Programs

There is nothing really special about building a DLGR ProDOS 8 SYS program for
DLGR since the load address of a ProDOS SYS program is at $2000, well above the text
screen display memory area which is used by DLGR (and LGR) for both graphics, and
mixed-text and graphics display. It builds “out of the box”. No special linker
configuration is required. As in any of the demos listed above, a build environment
complete with a gcc compatible MAKEFILE is provided so no need to document it here.
Simply review the MAKEFILE and the other baggage that comes with dlodemo.

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 4 of 46

http://www.appleoldies.ca/cc65/docs/dhgr/dhiworld.pdf
http://www.appleoldies.ca/cc65/programs/dhgr/dhiworld.zip
http://www.appleoldies.ca/cc65/docs/dhgr/dhishow.pdf
http://www.appleoldies.ca/cc65/programs/dhgr/dhishow.zip
http://www.appleoldies.ca/cc65/docs/dlgr/dlodemo.pdf
http://www.appleoldies.ca/cc65/programs/dlgr/dlodemo.zip
http://www.appleoldies.ca/cc65/docs/dlgr/dloshow.pdf
http://www.appleoldies.ca/cc65/programs/dlgr/dloshow.zip

I should also note that these demos are provided with monolithic source code with many
of the routines in header files, and do not instead link to a library other than the libraries
provided with the current cc65 snapshot. This is because all of this is still under
development and will not be put into any library or tgi driver until the end of this project.
Since we are only at the start of this project, I will continue to use this monolithic format
for distributing and improving everything and making it available as I go.

So now we get to the “crux of the biscuit”; the DLGR core routines, followed by the
demo routines, followed by the dlodemo main program, so get ready for a long read.

DLGR Itself

DLGR is well documented. The ideal reader of this document should have a working
knowledge of DLGR and LGR on the Apple II. While a great deal of detail about DLGR
is included in this document, by the time you become interested in writing DLGR
programs in cc65, I am assuming that you know how to write C programs, and you know
the Apple II. This is not to say that you need to know what I know, and pretty-much any
Apple II developer will likely learn something about DLGR by reading this document. I
am simply saying that you shouldn’t stop with my notes. Experience and additional
DLGR research of your own is both required and fun! 

Double-Res Mode

Whether we are writing for DHGR, or DLGR, many commonalities exist since the
Language Card and Auxiliary Memory are used by both of the Apple II’s double-res
modes. Some commonalities also exist between double-res mode on the Apple IIe and
SHR (Super Hi-Res) graphics modes on the Apple IIgs (and the Apple II VOC – Apple’s
Video Overlay Card) in that Auxiliary Memory is also used in SHR, although somewhat
differently.

Apple II Graphics in General

Whether we are writing for single-res (LGR and HGR) or double-res (DLGR or DHGR)
many commonalities also exist, and many methods are re-usable, such as mixed-text and
graphics routines for 80-column mode in DLGR, HGR, and DHGR. But you don’t need
to be a C language programmer to know this; whether you program the Apple II in
BASIC, or some other language it is likely you already know a good deal about the
material in this document. So the bits and pieces that are needed to write double-res
graphics programs in cc65 and detailed herein can be viewed by you as “glue”.

Graphics Programming in General

If you have not done much graphics programming do not fear, but keep your calculator
and your Internet Search Engine both handy and active as you read along. The nasty thing
about writing any graphics program is that the experience always leaves more questions
asked than answered. This is also like Apple II programming, C programming, and any

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 5 of 46

programming. So the only way to get through graphics programming is to wade through
it without drowning, dissecting each detail as you go, keeping in mind that no matter how
humble a pixel on a display might seem, at the end of the day, it is that same pixel (or
graphics image) on the display that builds the greatest of graphics applications.

And it’s mostly just arithmetic and logic, and not advanced mathematics that is at the
core of the greatest of graphics applications, and lots of humble pixels and work of
course.

Getting Started in DLGR Pixel Graphics

We need to start with the DLGR Core Routines and “drill-down” from there. At the very
heart of DLGR (and DHGR) is the interleaving of auxiliary display memory with main
memory. In 16-color DHGR the pixels are packed entirely differently in memory than in
6-color HGR. But since LGR already had 16 colors to begin with, only the color index
values differ between auxiliary and main memory. Double-Resolution is truly achieved
in DLGR; for every LGR pixel, DLGR has two pixels; the first pixel in a pixel pair is in
auxiliary memory and the second pixel in main memory. By comparison, DHGR is really
not double the resolution of HGR… it is actually only half the resolution of HGR except
in monochrome mode.

As far as comparing DLGR to DHGR, DLGR has no such thing as monochrome mode.
DHGR is also not even double the horizontal resolution of DLGR, nor is it proportionally
the same; only the colors are the same.

Auxiliary and Main Memory

The Apple II’s double resolution modes, DLGR and DHGR, and the Apple II’s 80-
column text mode, split their screens across main and auxiliary memory.

#define dhraux ((unsigned char*)0xC055)
#define dhrmain ((unsigned char*)0xC054)

Switching between auxiliary and main screen memory is as easy as writing a byte to the
above soft switch addresses. These soft-switches are used throughout this demo:

dhraux[0] = 0; /* select auxiliary memory */
dhrmain[0] = 0; /* reset to main memory */

Or alternately by storing whatever is in the accumulator to the soft switch:

asm("sta $c055"); /* AUX MEM */
asm("sta $c054"); /* MAIN MEM */

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 6 of 46

Setting Video Modes

The following functions are used to set the video modes used in this demo. Keep in mind
that since cc65 uses the language card memory for other purposes in its linker
configuration file, we must use cc65’s routine (or an equivalent) to safely set to 80
column mode.

/* 80 column mode must be set before calling */
#pragma optimize (push,off)
void dloreson(void)
{
 /* page 1 double lores */
 asm("sta $c050"); /* GRAPHICS */
 asm("sta $c052"); /* GRAPHICS ONLY, NOT MIXED */
 asm("sta $c054"); /* PAGE ONE */
 asm("sta $c056"); /* LO-RES */
 asm("sta $c05e"); /* TURN ON DOUBLE RES */
}
#pragma optimize (pop)

The above is very similar to setting double hi-res mode when using double hi-res page
one. Some additional video mode routines are also used in this demo. All of these are
exactly the same as the double hi-res equivalent routines:

/* the following two routines work with all Apple IIe graphics
modes */
#pragma optimize (push,off)
void mixedtexton(void)
{
 asm("sta $c053"); /* MIXED TEXT/GRAPHICS */
}
#pragma optimize (pop)
#pragma optimize (push,off)
void mixedtextoff(void)
{
 asm("sta $c052"); /* GRAPHICS ONLY, NOT MIXED */
}
#pragma optimize (pop)
/* 80 column mode must be set to on after calling */
#pragma optimize (push,off)
void dloresoff(void)
{
 asm("sta $c051"); /* TEXT - HIDE GRAPHICS */
 asm("sta $c05f"); /* TURN OFF DOUBLE RES */
 asm("sta $c054"); /* PAGE ONE */
}
#pragma optimize (pop)

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 7 of 46

Lo-Res “Screen Holes” and Screen Memory

The Lo-Res and Double Lo-Res graphics modes use text screen memory which is
interleaved and not linear (and not contiguous in DLGR), with small blocks of 8 bytes
which are actively used by motherboard firmware and expansion slot devices, including
disk controller firmware to store important information. These forbidden areas must be
left alone in main memory.

Let’s take a look at some examples that show how the dlodemo program uses text screen
base address tables to avoid these problem areas when clearing the DLGR graphics
screen, or clearing the bottom 4 lines of the text screen when using mixed-text and
graphics mode…

/* clear the bottom 4 lines of the text screen in mixed mode
double res */
void dloclear_bottom(void)
{

char *crt;
int row, col;
char c = 32 + 128;
for (row = 0; row < 4; row++) {
 crt = (char *)(dlotextbase[row]);

 for (col = 0; col < 40; col++) {
 dhraux[0] = 0; /* select auxiliary memory */
 crt[col] = c;
 dhrmain[0] = 0; /* reset to main memory */
 crt[col] = c;

 }
 }
}
#pragma optimize (push,off)
void dloresclear()
{
 int idx;
 for (idx = 0; idx < 24; idx++) {
 asm("sta $c055"); /* AUX MEM */
 memset ((char *)textbase[idx], 0, 40);
 asm("sta $c054"); /* MAIN MEM */
 memset ((char *)textbase[idx], 0, 40);
 }
}
#pragma optimize (pop)

The screen holes are avoided the same way when clearing the DLGR screen to a color…

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 8 of 46

void dloresflood(unsigned char color)
{
 int idx;
 unsigned char maincolor, auxcolor;
 maincolor = (color << 4 | color);
 color = dloauxcolor[color];
 auxcolor = (color << 4 | color);
 for (idx = 0; idx < 24; idx++) {
 dhraux[0] = 0; /* select auxiliary memory */
 memset ((char *)textbase[idx], auxcolor, 40);
 dhrmain[0] = 0; /* reset to main memory */
 memset ((char *)textbase[idx], maincolor, 40);
 }
}

Base Address Tables

In the code above, base address tables are used to reference the starting memory of scan-
lines and text rows.

There has been considerable discussion in the csa2 newsgroup about the pros and cons of
using base address tables. For the average programmer a table of scan-line addresses is
the most readable and logical method to reference a scan-line origin, just as indexable
tables in general lend themselves to more readable and manageable C code.
.
Text Screen Base Address Table

Part of this demo used the Apple II’s Mixed Text and Graphics feature to print directly to
the bottom 4 lines of text screen memory in 80 column mode. The routines that do so are
supported by an 8 byte table with the starting address of each of these 4 lines:

/* base addresses for last 4 lines of text screen memory page 1
for mixed text and graphics mode */
unsigned dlotextbase[4]={
 0x0650,
 0x06D0,
 0x0750,
 0x07D0};

The above table can be used in any of the Apple II and Apple IIe Mixed Text and
Graphics modes, whether in 40 column or 80 column mode.

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 9 of 46

DLGR Graphics Screen Base Address Table

/* base addresses for text screen memory page 1 */
/* also the base addresses for the 48 scanline pairs for lores
graphics mode 40 x 48 x 16 colors */
unsigned textbase[24]={
 0x0400,
 0x0480,
 0x0500,
 0x0580,
 0x0600,
 0x0680,
 0x0700,
 0x0780,
 0x0428,
 0x04A8,
 0x0528,
 0x05A8,
 0x0628,
 0x06A8,
 0x0728,
 0x07A8,
 0x0450,
 0x04D0,
 0x0550,
 0x05D0,
 0x0650,
 0x06D0,
 0x0750,
 0x07D0};

DLGR Colors

Remapping Main Colors to Auxiliary Colors

In the dloresflood() code shown previously, you can see that the colors are different
for auxiliary memory than they are for main memory. To facilitate remapping auxiliary
colors a small table is used:

/* bank 0 color remapping to bank 1 color */
unsigned char dloauxcolor[16] = {

0,8,1,9,2,10,3,11,4,12,5,13,6,14,7,15};

Using this table avoids the right rotate no carry (right circular shift) of the 4-bit DLGR
color number that would otherwise be needed. Like scan-line base address tables (also
mentioned above) the goal here is readability. You can also see that even though the
DLGR display has a resolution of 80 x 48, in the dloresflood() code above only 24
lines are set to a color.

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 10 of 46

16 Colors – 4 Bits Per Pixel

/* lo-res colors and color order */
#define LOBLACK 0
#define LORED 1
#define LODKBLUE 2
#define LOPURPLE 3
#define LODKGREEN 4
#define LOGRAY 5
#define LOMEDBLUE 6
#define LOLTBLUE 7
#define LOBROWN 8
#define LOORANGE 9
#define LOGREY 10
#define LOPINK 11
#define LOLTGREEN 12
#define LOYELLOW 13
#define LOAQUA 14
#define LOWHITE 15

There are 16 – Colors on the Apple II DLGR screen. These are the same 16 colors as
LGR and DHGR. The color values shown above are used thoughout the program for the
color argument for all the functions. The dloauxcolor[16] table discussed previously
uses these color values as an index map.

As shown above, each of DLGR’s 16 colors has its own 4-bit value which plots
alternately across Auxiliary and Main Memory (Banks 1 and 0) in increments of 1 pixel,
with even pixels in bank 1 and odd pixels in bank 0.

2 Vertical Pixels Per Byte

Two lines of color plot on the DLGR display at the same time when we put a byte into
screen memory. This because 2 colors (4-bit pixels) fit into one byte and you can’t “split”
a byte across 2 different addresses like bank0 and bank1, both because a byte is the
lowest common denominator of memory address storage, and, due to “bank-switching”
on the Apple II, each even or odd byte shares the same address. Also the DLGR memory
address is the same as the 80 column text screen which of course also inherently works in
bytes, and must work co-operatively with DLGR and vice-versa.

Screen Resolution – 80 x 48 (Full Graphics) or 80 x 40 (Mixed Mode)

The amount of “space” for pixel pairs (bytes) on DLGR is the storage size of an 80
column text screen… each byte is 2 colors (pixels) high and each line is 80 colors
(columns, pixels) across.

This provides DLGR with a vertical resolution of 48 “pixel lines” in height in “full
graphics” mode and 40 “pixel lines” in “mixed text and graphics” mode. Unlike in the

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 11 of 46

HGR display memory which can hold “full screen” graphics while we merrily switch
“mixed” and “full” on and off. This is due to the “split personality” of the DLGR display
memory (because the text and graphics in DLGR (and LGR) share exactly the same
memory), so graphics in LO-RES “mixed” modes (DLGR and LGR) are a maximum of
only 40 “pixel lines” (20 bytes) in height.

Mixed Text and Graphics

In the discussion of “Lo-Res” Screen Holes earlier in this document the
dloclear_bottom () function was already listed:

/* clear the bottom 4 lines of the text screen in mixed mode
double res */
void dloclear_bottom(void)
{

char *crt, c = 32 + 128;
int row, col;
for (row = 0; row < 4; row++) {
 crt = (char *)(dlotextbase[row]);

 for (col = 0; col < 40; col++) {
 dhraux[0] = 0; /* select auxiliary memory */
 crt[col] = c;
 dhrmain[0] = 0; /* reset to main memory */
 crt[col] = c;

 }

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 12 of 46

 }
}

Dlodemo uses a second function to print rows of text to the bottom of the DLGR screen
when in mixed-mode (The idea here is to go right to text screen memory in 80 column
mode. Remember to use cc65 to set to 80 column mode.):

/* print string directly to text screen memory in mixed mode
double res */
/* row settings = 0,0 to 3,79 in mixed text and graphics mode */
void dloprint_bottom(char *str,int row,int col)
{
 char *crt, c;
 int x, aux = 1, idx, jdx = 0;
 x = col / 2;
 if (col % 2) aux = 0;
 crt = (char *)(dlotextbase[row]+x);
 idx = 0;
 for (;;) {
 c = str[idx]; idx++;
 if (c == 0)break;
 c+=128;
 if (aux == 1) {
 dhraux[0] = 0; /* select auxiliary memory */
 crt[jdx] = c;
 aux = 0;
 }
 else {
 dhrmain[0] = 0; /* reset to main memory */
 crt[jdx] = c;
 jdx++;
 aux = 1;
 }
 }
 /* safety play */
 dhrmain[0] = 0; /* reset to main memory */
}

The above is a simple function and does not print mouse-text characters or reverse video.

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 13 of 46

Font Routines

The font routines in this demo come in two variations:

• The “Tom Thumb” Font
• The Extended Aztec C65 Font

The dlodemo Title Screen uses the Extended Aztec C65 Font.

The Extended Aztec C65 Bitmapped Font

This font is really a monochrome font based on an Apple II bit-mapped font for HGR
mode and also looks fine on the DHGR monochrome display where it plots quickly in
mono to 80 columns. In this demo it is used as a bitwise DLGR “pixel map”:

/* Apple II 7 x 8 bitmapped font - can be used as-is in HGR mode
or as a character map for plotting a pixel-graphics font. This is
an extended and modified version of the __chr[760] array
originally shipped with the graphics library for the Aztec C65
CII compiler for DOS 3.3 from Manx Software Systems, 1983. I
modified and extended it in 1989-1990 in its present form (below)
to contain Ascii Values from 32-168 which includes multilingual
characters and symbols based on the IBM-PC extended character set
for MS-DOS. I further extended it to include all the IBM extended
characters in my AWINDLO utility in 2013. */
unsigned char __chr[1096] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x00, 0x0C, 0x00,
...
0x3C, 0x66, 0x3C, 0x00, 0x7E, 0x00, 0x00, 0x00,
0x18, 0x00, 0x18, 0x0C, 0x06, 0x66, 0x3C, 0x00};
int msk7[]={0x1,0x2,0x4,0x8,0x10,0x20,0x40};
/* Double Lo-Res 7 x 8 x 16 color font routine */
/* uses scanline by scanline plotting rather than character by
character plotting */
void dlofont(char *str,int row,int col,int fg,int bg,int scale)
{
 int target, scanline, offset, r, r2, c, d, byte, nibble, x,
color;
 unsigned char ch;
 if (scale > 2)scale = 1;
 target = strlen(str);
 for(scanline=0;scanline<8;scanline++)
 {

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 14 of 46

 /* set values for vertical term */
 /* expand x scale in the vertical direction */
 r = (scanline * scale) + row; /* max 16 high */
 if (r > 47)break;
 r2 = r + 1;
 /* run the string 8 times
 if scale == 2 then print a double line
 each time which gives us a font of 16 high */
 for (byte=0;byte<target;byte++)
 {
 /* calculate the starting column for each run
 in the width of 7 pixels */
 c = (byte * 7) + col;
 if (c > 79)continue;
 d = str[byte]&0x7f;
 if (d < 32)d = 32;
 if (d == 32 && bg < 0)continue;
 offset = ((d-32) * 8) + scanline;
 ch = __chr[offset];
 for (nibble=0;nibble<7;nibble++)
 {
 x = c+nibble;
 if (x > 79)break;
 if (ch & msk7[nibble]){
 color = fg;
 }
 else {
 if (bg < 0)continue;
 color = bg;
 }
 dloplot((unsigned char)x,(unsigned char)r,
 (unsigned char)color);
 if (scale > 1)dloplot((unsigned char)x,
 (unsigned char)r2,(unsigned char)color);
 }
 }
 }
}

As you can see, this font routine provides the following features:

• double scaling in the vertical direction
• background color
• foreground color

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 15 of 46

The “Tom Thumb” Font

In this demo, I am introducing the “Tom Thumb” Font to the Apple II. The “Tom
Thumb” Font (shown above and below) was originally developed as a Palm Pilot font by
developer Brian Swetland, and “fine-tuned” as a derivative work by Robey Pointer,
robeypointer@gmail.com :

Brian Swetland’s Copyright and Conditions of Use for the original font are in the
dlodemo source code header file “tomthumb.h”. If you decide to use Robey’s “Tom
Thumb” Font in your own programs, you must leave Brian’s Copyright and Conditions in
the source code. More can be read about this font at the following link:

http://robey.lag.net/2010/01/23/tiny-monospace-font.html

Mentioning the use of the “Tom Thumb” Font herein is neither an endorsement, nor a
promotion by either of these two individuals; merely an attribution to them. The
implementation of this font in the dlodemo was entirely hand-built by me in my

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 16 of 46

http://robey.lag.net/2010/01/23/tiny-monospace-font.html
mailto:robeypointer@gmail.com

programmer’s editor by simply looking at the image above and counting pixels. The same
method of building a fixed pitch font can easily be done for any font.

This 4 x 6 fixed-pitch font provides 96 reasonably legible ASCII characters and can be
pixel-mapped to provide the various displays for the Apple II with a color (or
Monochrome) font:

Display Mode
Color

Columns Rows Characters

LGR 10 8 80
DLGR 20 8 160
HGR 35 32 1120
DHGR 35 32 1120
SHR 320 80 33 2640
SHR 640 160 33 5280
Monochrome
HGR 70 32 2240
DHGR 140 32 4480

For the Apple II’s higher resolution modes display modes a tiny 4 x 6 font would be a
novelty more than anything else, or might not appear proportionate. For the lower
resolutions, other alternatives like Mixed-Text and Graphics mode are also available,
especially for the plain Lo-Res (LGR) display. For HGR Color Mode or HGR and DHGR
Monochrome Modes a Monochrome Font might be just as good for your purposes or
alternately the “Tom Thumb” Font might be more effective.

But for DLGR, the “Tom Thumb” Font provides a reasonable mechanism for rendering
short text strings on the graphics display:

unsigned char tomthumb[1728] = {…};
/* mono-spaced "tom thumb" 4 x 6 font */
/* using a byte map to gain a little speed at the expense of
memory */
/* a bitmap could have been encoded into nibbles of 3 bytes per
character rather than the 18 bytes per character that I am using
but the trade-off in the speed in unmasking would have slowed
this down */
void plotthumb(unsigned char ch,
 unsigned char x, unsigned char y,
 unsigned char fg, unsigned char bg)
{
 unsigned offset;
 unsigned char x1, x2=x+3, y2=y+6, byte;
 if (ch < 33 || ch > 127) ch = 0;
 else ch -=32;
 if (ch == 0 && bg > 15) return;

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 17 of 46

 /* each of the 96 characters is encoded into 18 bytes */
 offset = (18 * ch);
 while (y < y2) {
 for (x1 = x; x1 < x2; x1++) {
 if (x1 > 79) {
 offset++;
 continue;
 }
 byte = tomthumb[offset++];
 if (byte == 0) {
 if (bg > 15) continue;
 dloplot(x1,y,bg);
 }
 else {
 if (fg > 15) continue;
 dloplot(x1,y,fg);
 }
 }
 /* if background color is being used then
 a trailing pixel is required
 between characters */
 if (bg < 16 && x2 < 79)dloplot(x2,y,bg);
 if (y++ > 47) break;
 }
}
/* normally spaced 4 x 6 font */
/* using character plotting function plotthumb() (above) */
void dlothumb(char *str,unsigned char x, unsigned char y,
 unsigned char fg,unsigned char bg,
 unsigned char justify)
{
 int target;
 unsigned char ch;
 if (justify == 'M' || justify == 'm') {
 target = strlen(str);
 x-= ((target * 4) /2);
 }
 while ((ch = *str++) != 0) {
 plotthumb(ch,x,y,fg,bg);
 x+=4;
 }
}

As you can see, this font routine provides the following features:

• left or middle justification of horizontal datum point
• background color
• foreground color

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 18 of 46

Graphics Primitives in DLGR

Does Pixel Size Matter?

Calculation of pixel graphics co-ordinates in any graphics display must always be as
precise as possible. DLGR is a very coarse and “jaggy” resolution. You might think that
because DLGR is coarse, that the appearance of a pixel that is out of position by a single
digit might not matter, but a graphics primitive will appear out of balance even more so
when pixels are large, than in a higher resolution mode like HGR which has smaller and
more forgiving pixels.

Calculating Pixel Position

Proportion and Aspect Ratio

For proper appearance, especially when drawing a centric primitive like a circle or an
equilateral triangle, screen resolution must be considered, and pixel placement must
rotate proportionally and evenly around the axis point. As in any graphics display, an
aspect ratio adjustment is required to make these primitives appear proportional on the
Apple II DLGR display. Other primitives like squares and polygons must also observe
the same proportional consideration, as must all other graphics, like characters in font
sets, and bit-mapped graphics images and “pseudo-sprites” (image fragments).

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 19 of 46

To achieve proportional appearance, this demo uses a DLGR aspect ratio adjustment of
1.16 rounded down to the nearest integer to compress the vertical aspect from 48 logical
scan-lines to 41 physical scan-lines when it calculates pixel plotting co-ordinates.

Precision Constraints

1. The Apple II display, like other pixel graphics displays, uses 2 integers to
describe the horizontal and vertical co-ordinates to plot pixels, so eventually any
real numbers must be rounded to integer co-ordinates for display, with some
inherent precision loss.

2. For calculations involving algebra, integer math is only a (usually) close
approximation. Since the Apple II does not provide a floating point processor and
the cc65 compiler does not provide “soft” floating point calculations, integer math
must be used to calculate the shape co-ordinates of any primitive object like a
circle or a triangle, resulting in precision loss from rounding.

3. Adjusting co-ordinates for DLGR’s aspect ratio to achieve proportional
appearance also adds some additional precision loss from rounding. To achieve
the best possible results, aspect adjustment should be applied to final calculated
co-ordinate values that are as precise as possible.

So consequently, the dlodemo program’s graphics primitives are hardly perfect, but
dlodemo provides some simple and reasonably effective techniques for using integers

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 20 of 46

instead of real numbers to draw graphics primitives on the DLGR display. These could be
fine tuned with rounding error adjustments and all the rest of it, but since I am hurrying
hard I simply didn’t bother to take the time to take this further. The Internet is rich with C
language source code for doing vector graphics and it is easily adapted to writing cc65
programs. So with all due respect, and with this working well enough, additions and
refinements have been left as an optional exercise for the reader.

Achieving a Reasonable Compromise

Consider the primitive shape shown above. The equilateral triangle balances from side to
side; all the pixels match from side to side. The circle is also balanced and the pixels
match in all 8 segments. But the right edge of the triangle is 1 pixel closer to the right
edge of the circle than the left edge.

While I have taken very little time to provide much more than some “lame” primitives for
DLGR simply because the whole point of this demo is to provide cc65 with support for
DLGR and not to impress you with elegant pixel graphics.

At the same time I won’t avoid the discussion altogether, so let’s talk a little more about
the triangle in the circle shown above; here’s the code that makes it happen:

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 21 of 46

void dlotricircle(int x,int y,int base,unsigned char color)
{
 int x1 = x - (base/2);
 int x2 = x1 + base;
 int height = (base * 100) / 130;
 int y1 = y - (height/2);
 int y2 = y1 + height;
 int cy, a, b, r;
 dloline(x2,y2,x,y1,color);
 dloline(x,y1,x1,y2,color);
 dloline(x1,y2,x2,y2,color);
 cy = y1 + (height * 2) /3;
 a = (base / 2);
 b = (base / 3);
 r = ihypot(a,b) + 1;
 dlocircle(x,cy,r,color);
}

The code above is an aggregate graphics primitive that I “dreamed-up” based on the
circumscribed circle of an equilateral triangle. Wikipedia has a good article on
equilateral triangles, so if you are interested in the math behind what I have done here,
visit the following link:

http://en.wikipedia.org/wiki/Equilateral_triangle

In the code above, I am also doing some proportional scaling based on DLGR’s 1.16
vertical aspect ratio adjustment of 48 to 41 scan-lines and some integer math, as
previously discussed.

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 22 of 46

http://en.wikipedia.org/wiki/Equilateral_triangle

Drawing Circles in DLGR

So let’s also take a look at the DLGR circle routine that I have provided:

/* Aztec C65 circle algorithm, taken from the HGR mode Aztec C65
3.2b version, and originally written circa 1982-83, then modified
for DLGR */
void dlocircle(int cx,int cy,int r, unsigned char color)
{
 int x,y,a,b,c,d,f;
 x=r; y=0; b=1; f=0;
 a=(-2)*x+1;
point:
 c= (int) x;
 d= (int) y;
 /* 1.16 aspect ratio reduction in y axis for DLGR */
 dloplot((unsigned char)c+cx,
(unsigned char)((y*100)/116)+cy, color);
 dloplot((unsigned char)d+cx,
(unsigned char)((x*100)/116)+cy, color);
 dloplot((unsigned char)-d+cx,

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 23 of 46

(unsigned char)((x*100)/116)+cy, color);
 dloplot((unsigned char)-c+cx,
(unsigned char)((y*100)/116)+cy, color);
 dloplot((unsigned char)-c+cx,
(unsigned char)((-y*100)/116)+cy,color);
 dloplot((unsigned char)-d+cx,
(unsigned char)((-x*100)/116)+cy,color);
 dloplot((unsigned char)d+cx,
(unsigned char)((-x*100)/116)+cy,color);
 dloplot((unsigned char)c+cx,
(unsigned char)((-y*100)/116)+cy,color);
 if(b>= -a)
 goto fin;
 y+=1; f+=b;
 b+=2;
 if(f>r)
 {
 f+=a;
 a+=2;
 x-=1;
 }
 goto point;
fin:;
}

In the code above and as previously discussed, DLGR’s horizontal aspect ratio is 1.16 of
the vertical, so to compensate and make the circle appear round instead of elongated, the
y axis (vertical axis) is compressed by 86%, from 48 to 41 scan-lines, during the plotting
process.

Integer Algebra

You should also note in the dlotricircle() code shown above that a function called
ihypot()is called to provide the radius to draw the circle:

/* based on Integer Square Roots by Jack W. Crenshaw
http://www.embedded.com/electronics-blogs/programmer-s-
toolbox/4219659/Integer-Square-Roots

copied from (with minor changes)
http://www.codecodex.com/wiki/Calculate_an_integer_square_root */

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 24 of 46

http://www.codecodex.com/wiki/Calculate_an_integer_square_root%20*/
http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots%20
http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots%20

unsigned isqrt(unsigned n)
{
 unsigned root = 0, remainder = n, place = 0x4000;
 while (place > remainder)
 place = place >> 2;
 while (place)
 {
 if (remainder >= root + place)
 {
 remainder = remainder - root - place;
 root = root + (place << 1);
 }
 root = root >> 1;
 place = place >> 2;
 }
 return root;
}
/* returns the integer value of the hypoteneuse of a right angle
triangle. may require a rounding area adjustment of an additional
pixel */
unsigned ihypot(unsigned x, unsigned y)
{
 return isqrt ((x * x) + (y *y));
}

Those of you who know Jack Crenshaw also likely know that he programmed the Apollo
Space Mission and is again programming the trajectory analysis with a Google Ranger
Team. Jack has been on this planet a long time… around 80 years or so, and knows a lot
about programming, and the code he has cut from that time to this is pretty darned stable
whether for landing on the moon or more common and less critical purposes, so for the
purposes of this demo, and following Crenshaw’s first law (KISS), I kept it simple,
Simon, and just used Jack’s code instead of literally re-inventing the wheel.

As previously noted, I’ll leave it to the reader to explore this particular piece of the demo
a little further. Suffice to say that apparently everything seems to work as expected when
it comes to calculating the correct integer value for the radius of the bounding circle for
the circumscribed equilateral triangle from the hypotenuse algorithm made possible by
Crenshaw’s integer square root function.

Crenshaw has other integer-based routines rattling around the Internet which may also be
adaptable to your particular needs, whether for DLGR or just any old integer math.

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 25 of 46

Drawing Equilateral Triangles in DLGR

As far as the triangle itself goes, the code below used in this demo pretty-much sums-it
up:

void dloequilateral(int x,int y,int base,unsigned char color)
{
 int x1 = x - (base/2);
 int x2 = x1 + base;
 int height = (base * 100) / 130;
 int y1 = y - (height/2);
 int y2 = y1 + height;
 dloline(x2,y2,x,y1,color);
 dloline(x,y1,x1,y2,color);
 dloline(x1,y2,x2,y2,color);
}

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 26 of 46

Drawing Lines in DLGR

You can see in the code above that the dloline() function is called. This is an “almost
standard” line drawing routine:

/* Bresenham Algorithm line drawing routine for double lo-res */
void dloline(int x1, int y1, int x2, int y2, unsigned char color)
{
 int dx, dy, sx, sy, err, err2;
 /* single pixel */
 if (x1 == x2 && y1 == y2) {
 dloplot((unsigned char)x1,(unsigned char)y1,color);
 return;
 }
 /* vertical line */
 if (x1 == x2) {
 if (y1 < y2) dlovline((unsigned char)x1,
 (unsigned char)y1, (unsigned char)y2, color);
 else dlovline((unsigned char)x1,
 (unsigned char)y2, (unsigned char)y1, color);
 return;
 }
 /* horizontal line */
 if (y1 == y2) {
 if (x1 < x2) dlohline((unsigned char) y1,
 (unsigned char)x1, (unsigned char)x2, color);
 else dlohline((unsigned char) y1,
 (unsigned char)x2, (unsigned char)x1, color);
 return;
 }
 /* vector */
 if(x1 < x2) {
 dx = x2 - x1;
 sx = 1;
 }
 else {
 sx = -1;
 dx = x1 - x2;
 }
 if(y1 < y2) {
 sy = 1;
 dy = y2 - y1;
 }
 else {
 sy = -1;

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 27 of 46

 dy = y1 - y2;
 }
 err = dx-dy;
 for (;;) {
 dloplot((unsigned char)x1,(unsigned char)y1,color);
 if(x1 == x2 && y1 == y2)break;
 err2 = err*2;
 if(err2 > (0-dy)) {
 err = err - dy;
 x1 = x1 + sx;
 }
 if(err2 < dx) {
 err = err + dx;
 y1 = y1 + sy;
 }
 }
}

Note that I said this line drawing routine is “almost standard”… at the beginning of the
line drawing routine, if the line is a horizontal line, I call the dlohline() function and
if the line is a vertical line, I call the dlovline() function, and for everything else, the
dloplot() function is called. Let’s take a look at those functions now:

Plotting a Pixel in DLGR

#pragma optimize (push,off)
void dloplot(unsigned char x, unsigned char y,
 unsigned char color)
{
 unsigned char w, z = x;
/* Double Lo-Res works the same way 80-column text does:
 columns 0, 2, 4, ...78 are stored in Auxiliary Memory,
 and columns 1, 3, 5, ...79 are stored in Main Memory. */
 x = z / 2;
 w = x * 2;
 if (z==w) {
 setlocolor(dloauxcolor[color]);
 dhraux[0] = 0; /* select auxiliary memory */
 }
 else {
 setlocolor(color);
 dhrmain[0] = 0; /* select main memory */
 }
 asm("LDY #%o", y);
 asm("LDA (sp),Y");
 asm("PHA");
 asm("LDY #%o", x);
 asm("LDA (sp),Y");
 asm("TAY"); // Lo-Res Plot X (Horizontal) Coordinate (0-39)

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 28 of 46

 asm("PLA"); // Lo-Res Plot Y (Vertical) Coordinate (0-39)
 SWITCH_ROM;
 asm("JSR $F800");
 SWITCH_LC2;
 /* safety play */
 if (z==w) dhrmain[0] = 0; /* reset to main memory */
}
#pragma optimize (pop)

Setting the DLGR Pixel Color

In the code above a call is made to the setlocolor() function. Whether we are using
DLGR or LGR, this same call is used. But with DLGR (as previously mentioned) we
need to remap the colors to a different value for auxiliary memory (as shown above).

#pragma optimize (push,off)
void setlocolor(unsigned char value)
{
 asm("LDY #%o", value);
 asm("LDA (sp),Y");// Sets the plotting color to N, 0 <= N <= 15
 SWITCH_ROM;
 asm("JSR $F864");
 SWITCH_LC2;
}
#pragma optimize (pop)

The code above is from Oliver Schmidt, and was provided as part of a csa2 thread from a
few years back. It is a cc65 equivalent of my Aztec C65 LGR routines.

Drawing Horizontal Lines

The following code draws a horizontal line in DLGR mode using the dloplot()
function:

void dlohline(unsigned char y, unsigned char x1,
 unsigned char x2, unsigned char color)
{
 unsigned char x;
 /* swap horizontal co-ordinates if out of order */
 if (x1 > x2) {
 x = x2;
 x2 = x1;
 x1 = x;
 }
 x2++;
 for (x = x1; x < x2; x++) dloplot(x, y, color);
}

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 29 of 46

Drawing Vertical Lines

The following code draws a vertical line in DLGR mode:

/* Oliver's lovlin routine - used by dlovline */
#pragma optimize (push,off)
void lovlin(unsigned char x, unsigned char y1, unsigned char y2)
{
 /* Bottom Y Coordinate (0-47) */
 /* Store it at V2 Lo-res line end-point */
 *(unsigned char *)0x2d = y2;
 asm("LDY #%o", y1);
 asm("LDA (sp),Y");
 asm("PHA");
 asm("LDY #%o", x);
 asm("LDA (sp),Y");
 asm("TAY"); // X Coordinate (0-39)
 asm("PLA"); // Top Y Coordinate (0-47)
 SWITCH_ROM;
 asm("JSR $F828");
 SWITCH_LC2;
}
#pragma optimize (pop)
/* dlovline calls Oliver's lovlin routine above */
void dlovline(unsigned char x, unsigned char y1,
 unsigned char y2, unsigned char color)
{
 unsigned char y, z=x;
 /* swap co-ordinates if out of order */
 if (y1 > y2) {
 y = y2;
 y2 = y1;
 y1 = y;
 }
/* Double Lo-Res works the same way 80-column text does:
 columns 0, 2, 4, ...78 are stored in Auxiliary Memory,
 and columns 1, 3, 5, ...79 are stored in Main Memory. */
 x = z/2;
 y = x * 2;
 if (y==z) {
 setlocolor(dloauxcolor[color]);
 dhraux[0] = 0; /* select auxiliary memory */
 }

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 30 of 46

 else {
 setlocolor(color);
 dhrmain[0] = 0; /* select main memory */
 }
 /* just calling Oliver's routine directly */
 lovlin(x,y1,y2);
 if (y==z) dhrmain[0] = 0; /* reset main memory */
}

Plotting a Pixel in DLGR – Alternate Method

Rather than calling the Apple II’s built-in LGR routines using inline assembly, an
alternate method of plotting a pixel in DLGR is to address screen memory directly:

/* an equivalent plotting routine that does not use the
 Apple II's built-in LGR plotting routine
 but uses the textbase array and goes directly to memory */
void dloplot(unsigned char x,unsigned char y,
 unsigned char color)
{
 unsigned char *crt = (unsigned char *)(textbase[y/2]+x/2);
 if (x%2 == 0) {
 color = dloauxcolor[color];
 dhraux[0] = 0; /* select auxiliary memory */
 }
 else {
 dhrmain[0] = 0; /* select main memory */
 }
 if (y%2 == 0) {
 /* even rows in low nibble */
 /* mask value to preserve high nibble */
 crt[0] &= 240;
 crt[0] |= color;
 }
 else {
 /* odd rows in high nibble */
 /* mask value to preserve low nibble */
 crt[0] &= 15;
 crt[0] |= (color << 4);
 }
 if (x%2 == 0) dhrmain[0] = 0; /* reset to main memory */
}

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 31 of 46

Drawing Squares in DLGR

Drawing a square in DLGR uses the same 1.16 vertical aspect compression technique as
drawing a circle to ensure that a square is roughly square:

/* square algorithm */
void dlosquare(int x,int y,int base,unsigned char color)
{
 int x1 = x - (base/2);
 int x2 = (x1 + base)-1;
 int height = (base * 100) / 116;
 int y1 = y - (height/2);
 int y2 = (y1 + height)-1;
 dloline(x1,y1,x2,y1,color);
 dloline(x1,y1+1,x1,y2-1,color);
 dloline(x2,y1+1,x2,y2-1,color);
 dloline(x1,y2,x2,y2,color);
}

Drawing a square circumscribed within a circle is somewhat similar to drawing a
circumscribed equilateral triangle:

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 32 of 46

void dlosquarecircle(int x,int y,int base,unsigned char color)
{
 int x1 = x - (base/2);
 int x2 = (x1 + base) - 1;
 int height = (base * 100) / 116;
 int y1 = y - (height/2);
 int y2 = (y1 + height) - 1;
 int r = ihypot(base/2,height/2)+2;
 dloline(x1,y1,x2,y1,color);
 dloline(x1,y1+1,x1,y2-1,color);
 dloline(x2,y1+1,x2,y2-1,color);
 dloline(x1,y2,x2,y2,color);
 dlocircle(x,y,r,color);
}

Drawing Boxes in DLGR

From the view of not doing much math, a box is the most primitive of any of the graphics
primitives composed of line elements and points:

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 33 of 46

void dlobox(unsigned char x1, unsigned char y1,
 unsigned char x2, unsigned char y2,
 unsigned char color)
{
 unsigned char x, y;
 /* swap horizontal co-ordinates if out of order */
 if (x1 > x2) {
 x = x2;
 x2 = x1;
 x1 = x;
 }
 /* swap vertical co-ordinates if out of order */
 if (y1 > y2) {
 y = y2;
 y2 = y1;
 y1 = y;
 }
 y = x2 + 1;
 for (x = x1; x < y; x++) dloplot(x, y1,color);
 y1++;
 y2--;
 dlovline(x1, y1, y2, color);
 dlovline(x2, y1, y2, color);
 y2++;
 for (x = x1; x < y; x++) dloplot(x, y2, color);
}

Unlike triangles, squares and circles, boxes do not concern themselves with proportion;
the math to draw a box is very simple and self-explanatory. While more advanced
primitives can be fun to diddle in DLGR, results are pretty lame and less than stellar, and
barely better than LGR. But besides that, at the end of the day, how often do you even
need a triangle or a square or even a circle? Some might even argue that spending any
time at all to draw anything besides a box in DLGR is a waste of time.

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 34 of 46

Line Drawing Scripts in DLGR

Line drawing scripts in DLGR can be fun, in the same way that Apple II shape tables can
be fun. They are calculation intensive and really serve no useful purpose on their own.
They do however provide an alternate method to bitmapped graphics, of rendering a
graphics image on the display:

#define WORLDMAP 0
#define USAMAP 1
#define MAPLELEAF 2
/* the coordinates to draw the whole world */
int WORLD[] = {… -1, -2};
/* the coordinates to draw the USA */
int USA[] = {… -1, -2};
/* the coordinates to draw the canadian flag */
int MAPLE[] = {… -1, -2};

Line drawing scripts of x,y co-ordinates in dlodemo are stored as integer arrays of
multiple line segments. Each line segment is terminated with x,y co-ordinates of -1,-1 and
the script itself is terminated with -1,-2. In the USA map displayed above, line elements
of several colors are plotted. This is a feature of the drawing script routine and these
aren’t just some random colors, but come from (yet another) table:

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 35 of 46

int colors[] = {
LOLTBLUE,LOPINK,LOLTGREEN,LOYELLOW,LOAQUA,LOWHITE,-1};

As you can see, the table above is used with the drawmap() function below when the
alternating color option is selected by providing an out of range drawcolor:

void drawmap(int mapidx,int drawcolor)
{
 int *ptr, xidx=0,yidx=1,newx,oldx,newy,oldy,cidx=0;
 unsigned char color;
 /* select vector map or vector object */
 switch(mapidx)
 {
 case MAPLELEAF: ptr = (int *)&MAPLE[0];
 break;
 case USAMAP: ptr = (int *)&USA[0];
 break;
 case WORLDMAP:
 default: ptr = (int *)&WORLD[0];
 }
 /* draw selected map or object */
 for (;;) {
 /* alternating color option */
 if (drawcolor < 0 || drawcolor > 15) {
 if (colors[cidx] < 0)cidx = 1;
 color = (unsigned char)colors[cidx];
 cidx++;
 }
 else {
 color = (unsigned char)drawcolor;
 }
 oldx= ptr[xidx];
 oldy= ptr[yidx];
 for(;;)
 {
 xidx +=2;
 yidx +=2;
 newx= ptr[xidx];
 newy= ptr[yidx];
 if (newx == -1) break;
 /* draw next line */
 dloline(oldx,oldy,newx,newy,color);
 oldx=newx;
 oldy=newy;
 }
 if (newy == -2)break;
 xidx +=2;
 yidx +=2;
 }
}

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 36 of 46

Dlodemo Program Organization

The dlodemo main program and its “helper” functions call the core routines previously
listed. You can write your own DLGR cc65 pixel graphics demo with these self-same
core routines or maybe even something a tad more useful, like a DLGR paint program or
whatever you wish. But for now you may wish to look at how the dlodemo program pulls
all this DLGR pixel graphics stuff together.

Helper Functions

The following prints the titling on the title screen at the start of the dlodemo program.
This uses the bit-mapped font modified from the old Aztec C65 HGR font and not the
“Tom Thumb” font. (Both fonts were discussed previously in this document.)

/* font layout - each character is 7 pixels wide x 8 pixels high
 DLGR screen resolution is 80 x 48... which means we can write
 Only 11 characters across x 6 rows down... this isn't much
 Space but enough for a title of some sort... the font routine
 Below takes this somewhat further cramming each character
 Together into a six pixel cell width, with lowercase L's and
 I's and such into 5.
 This gives us 13 characters to muck with...
 01234567890123
*/

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 37 of 46

char *title[] = {
 "Double Lo-Res",
 "Graphics Demo",
 "In cc65",
 "by",
 "Bill Buckels",
 "July 2014"};
#define CELL_WIDTH 6
#define CELL_HEIGHT 8
#define SCREEN_WIDTH 80
#define MAX_ROWS 6
void rainbowfont(char *str, int row, int col)
{
 int idx, color = 7;
 char buf[2], ch;
 buf[1]=0;
 for (idx=0;str[idx]!=0;idx++) {
 ch = buf[0] = str[idx];
 if (ch == 'l' || ch == 'i' || ch == '1' || ch == 32 ||
 ch == '.' || ch == '-' || ch == '!')col -=1;
 dlofont(buf,row,col,color,-1,1);
 color++;
 if (color > 15)color = 7;
 if (ch == 'l' || ch == 'i' || ch == '1' || ch == 32 ||
 ch == '.' || ch == '-' || ch == '!')col+=5;
 else col+=6;
 }
}

Helper Function dloboxes()

The rainbowfont() function above is called in the routine below. The demo is
logically divided into 3 parts. The routine below is the first part. It draws a title screen
and some geometrical shapes and then vanishes into the night:

void dloboxes(void)
{
 int b, r, x1,y1,x2,y2,idx,len,color;
 /* splash screen */
 /* draw a box around the screen */
 dlobox(0,0,79,47,LOPURPLE);
 /* loop for all 6 available lines */
 y1 = 0;
 for (idx = 0; idx < MAX_ROWS; idx++) {
 /* centre title horizontally */
 len = strlen(title[idx]) * CELL_WIDTH;

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 38 of 46

 x1 = (SCREEN_WIDTH - len) /2;
 rainbowfont(title[idx],y1,x1);
 y1+=CELL_HEIGHT;
 }
 cgetc();
 /* square in circle demo */
 dloresflood(LODKBLUE);
 dlosquarecircle(40, 23, 26, (unsigned char)LOLTBLUE);
 cgetc();
 dloresflood(LOPURPLE);
 dlosquarecircle(40, 23, 30, (unsigned char)LOPINK);
 cgetc();
 dloresflood(LODKGREEN);
 dlosquarecircle(40, 23, 34, (unsigned char)LOLTGREEN);
 cgetc();
 dloresflood(LORED);
 dlosquarecircle(40, 23, 38, (unsigned char)LOORANGE);
 cgetc();
 /* square demo */
 dloresclear();
 /* 1.16 base ratio in y axis */
 b = (48 * 116) / 100;
 for (color = 0; color < 6; color++) {
 dlosquare(40, 23, b-(color*6), (unsigned char)color+10);
 }
 cgetc();
 /* triangle in circle demo */
 dloresflood(LODKBLUE);
 dlotricircle(40, 18, 23, (unsigned char)LOLTBLUE);
 cgetc();
 dloresflood(LOPURPLE);
 dlotricircle(40, 18, 29, (unsigned char)LOPINK);
 cgetc();
 dloresflood(LODKGREEN);
 dlotricircle(40, 18, 35, (unsigned char)LOLTGREEN);
 cgetc();
 dloresflood(LORED);
 dlotricircle(40, 18, 41, (unsigned char)LOORANGE);
 cgetc();
 /* triangle demo */
 dloresclear();
 /* 1.30 base ratio in y axis */
 b = (48 * 130) / 100;
 for (color = 0; color < 6; color++) {
 dloequilateral(40, 23, b-(color*6),
 (unsigned char)color+10);
 }
 cgetc();

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 39 of 46

 /* circle demo */
 dloresclear();
 /* 1.16 radius aspect ratio in y axis */
 r = (24 * 116) / 100;
 color = 7;
 for (b = 0; b < 8; b++) {
 dlocircle(40, 23, r-(b*2), (unsigned char)color);
 color++;
 }
 cgetc();
 /* box demo */
 dloresclear();
 x1 = 0;
 x2 = 79;
 y1 = 0;
 y2 = 39;
 for (color = 1; color < 16; color++) {
 dlobox(x1,y1,x2,y2, color);
 y1++;
 y2--;
 x1++;
 x2--;
 }
 dlothumb("Press a key",40,17,LOWHITE,255,'M');
 cgetc();
 dloclear_bottom();
 mixedtexton();
 dloprint_bottom(
 "Tired of looking at a bunch of boxes and stuff?",1,0);
 dloprint_bottom("Press any Key to see the USA!",3,0);
 cgetc();
}

Helper Function dloworld()

The function below is the second of the 3 parts of the dlodemo program. It implements
the line drawing scripts previously discussed in this document. First we draw the map of
the USA and wait for a keypress:

void dloworld(void)
{
 mixedtextoff();
 dloresclear();
 drawmap(USAMAP,-1);
 dlothumb("Press a key to C",40,0,LOWHITE,255,'M');
 dlothumb("The World of DLGR ",40,43,LOWHITE,255,'M');
 cgetc();

Then we draw the map of the world and wait for a keypress:

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 40 of 46

 dloresflood(LODKBLUE);
 drawmap(WORLDMAP,LOLTBLUE);
 cgetc();

Then we draw the outline of the Canadian Flag and wait for a keypress:

 dloresclear();
 drawmap(MAPLELEAF,LOPINK);
 dlothumb("Greetings from the",40,0,LOWHITE,255,'M');
 dlothumb("Great White North!",40,43,LOWHITE,255,'M');
 dlothumb("MADE IN CANADA",40,22,LOYELLOW,255,'M');
 cgetc();

Finally we switch to mixed-mode, and when we get the last keypress we are outa’ here:

 dloclear_bottom();
 mixedtexton();
 dloprint_bottom("How's Your Eyeballs? Tired of looking at a
bunch of jaggies?",1,0);
 dloprint_bottom("Prolly... So Press any Key to treat them to
a bit of a massage.",3,0);
 cgetc();
}

Readability Considerations

"If the mountain won't come to Muhammad then Muhammad must go to the mountain."

I continue to review lots of C code that works well but fails to be readable, and therefore
is not easy to share. Some notion that C is self-commenting doesn’t appeal to me.
Comments should always be in C code.

If you want to do Apple II programming, there’s lots of low-level stuff to be mixed-in
with your C code that can make reading it even more confusing. Add comments.

Some other notion that Assembly and Low-Level Code should always be in separate
modules is too abstract. For one thing, it splits your C program into bits and pieces that
are too hard for most people to think of in “English” in tandem with the low-level code
and math and stuff that is necessary to accomplish a finished task.

All C programs should be documented and readable by your peers, so despite the fact that
many will disagree with what I have already said, I consider my peers to be people who
are average programmers and not the “hardcore” writers of compilers or accomplished
mathematicians or hardware engineers.

Simply put, the average programmer that takes time to learn the Apple II or any
programming platform or programming venue like Graphics, needs to be able to tie

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 41 of 46

thoughts and deeds to the task at hand, so nothing is more annoying or non-productive
than to need to open 20 or 30 books to discover how one line of code works.

Elegance and Efficiency are important too, and so is separation for portability in cross-
platform compilers like cc65, but at some point, readability, understanding, and
application level maintenance need to take priority over cross-platform reuse.

Just as transparency is important in a free democracy, readability is important in the
freedom of sharing knowledge, including the sharing of program code. In the real world,
I never make my code so hard to read that only an expert can read it. I provide extensive
documentation that explains fully what I am doing in both English and whatever other
programming language that I am working-in. I fully acknowledge that this “average”
approach won’t appeal to some scientists and other experts. But they are not my peers.
.
You will note in the code above that I split the listing by adding some additional
notations. I haven’t done that much throughout this document because in most cases
notation badly damages the readability of a code listing. I also initially said that I expect
you to be able to (eventually) read C code to follow along. There’s actually a little more
to-it than that; ideally you should be thinking in “English” (or whatever language you
normally think-in) while writing in C. If you don’t already do that, put it on your list of
things to learn… It would be pointless for me to make such a bold remark without an
example of what I mean, so I offer the notations in the code above as said example.

And so to conclude my rant, my view of cc65 is that it is only a tool to write programs for
the Apple II. If it needs to be “hacked” a little to make my programs work the way I want
them to work, and to be read by an “average” programmer, the code and documentation I
provide will always put readability ahead of other loftiness like portability and
optimizations that can be added at the program level.

The notations in the code above are simply provided as a demonstration of how I expect
you to (eventually) view a C program in the context of how I write one. If it works for
you then great!

Helper Function doublerod()

After all my talk above about comments and readability I now offer a piece of code
without comments that requires you to count on your fingers and your toes to understand.
In my view the average programmer will be able to understand the following third and
final helper function in the dlodemo program with some help from their fingers and toes
and a scribble-pad (grab a piece of paper from your printer if you don’t have a pad handy
and if you need to go to the kitchen and grab a pen to jot down some notes).

Rod is a well used and well known kaleidoscope algorithm. I’ll leave it to the reader to
visit the following link and find-out a little more:

http://www.appleoldies.ca/azgraphics33/rod33.htm

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 42 of 46

http://www.appleoldies.ca/azgraphics33/rod33.htm

As I have said, I will also leave it to the reader to decipher the math behind what is
happening below. The core functions in dlodemo (that appeared earlier in this document)
certainly provide sufficient information to do so.

The only clue that I am going to give you is that Rod’s Color Pattern is twice as wide in
DLGR as it is in LGR where in 1978, Randy Wigginton originally conceived this “simple
but eloquent program. It generates a continuous flow of colored mosaic-like patterns in a
40 high by 40 wide block matrix. Many of the patterns generated by this program are
pleasing to the eye and will dazzle the mind for minutes at a time."

/* rod's color pattern in dlogr */
int doublerod ()
{
 int i, j, k, w, fmi, fmk, color;
 unsigned char c=0;
 for (w = 3; w < 51; w++) {
 for (i = 1; i < 20; i++) {
 for (j = 0; j < 20; j++) {
 k = i + j;
 color = (j * 3) / (i + 3) + i * w / 12;
 fmi = 40 - i;
 fmk = 40 - k;
 dloplot((unsigned char)i,
(unsigned char)k,(unsigned char)color);
 dloplot((unsigned char)i+39,
(unsigned char)k,(unsigned char)color);
 dloplot((unsigned char)k,
(unsigned char)i,(unsigned char)color);
 dloplot((unsigned char)k+39,
(unsigned char)i,(unsigned char)color);
 dloplot((unsigned char)fmi,
(unsigned char)fmk,(unsigned char)color);
 dloplot((unsigned char)fmi+39,
(unsigned char)fmk,(unsigned char)color);
 dloplot((unsigned char)fmk,
(unsigned char)fmi,(unsigned char)color);
 dloplot((unsigned char)fmk+39,
(unsigned char)fmi,(unsigned char)color);
 dloplot((unsigned char)k,
(unsigned char)fmi,(unsigned char)color);
 dloplot((unsigned char)k+39,
(unsigned char)fmi,(unsigned char)color);
 dloplot((unsigned char)fmi,
(unsigned char)k,(unsigned char)color);
 dloplot((unsigned char)fmi+39,
(unsigned char)k,(unsigned char)color);

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 43 of 46

 dloplot((unsigned char)i,
(unsigned char)fmk,(unsigned char)color);
 dloplot((unsigned char)i+39,
(unsigned char)fmk,(unsigned char)color);
 dloplot((unsigned char)fmk,
(unsigned char)i,(unsigned char)color);
 dloplot((unsigned char)fmk+39,
(unsigned char)i,(unsigned char)color);
 if (kbhit()) {
 c = cgetc();
 return (int)c;
 }
 }
 }
 }
 if (kbhit()) {
 c = cgetc();
 }
 return (int)c;
}

This concludes the 3 helper functions used in dlodemo.

Main Program

int main()
{
 /* initialize 80 column card */
 /* this inializes the language card safely for cc65's
 standard memory configuration */
 videomode(VIDEOMODE_80COL);
 clrscr();
 /* turn-on double hi-res */
 dloreson();
 dloresclear();
 dloboxes();
 dloworld();
 for (;;) {
 mixedtextoff();
 dloresclear();
 dloclear_bottom();
 mixedtexton();
 dloprint_bottom("Double Rod - Rod's Color Pattern in
Duplex and Glorious Double Lo-Res...",0,0);

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 44 of 46

 dloprint_bottom("Rod's Color Pattern by Randy Wigginton
originally written in BASIC appeared on",1,0);
 dloprint_bottom("page 55 of the Red Book distributed by
Apple Computer, Inc. circa 1978.",2,0);
 dloprint_bottom("Press Escape to End or Any Other Key to
Refresh...",3,0);
 if (doublerod()==27)break;
 }
 mixedtextoff();
 dloresclear();
 dloresoff();
 /* set to 80 column again so cc65 can exit cleanly */
 videomode(VIDEOMODE_80COL);
 clrscr();
 return 0;
}

Well, dlodemo’s main program certainly looks simple.

Additional Notes

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 45 of 46

So there you have it! cc65 now supports DLGR pixel graphics, but then it always did, just
not directly through its tgi driver scheme. That’s a project for a different day and perhaps
for a different programmer.

Hopefully you gained something from all of this, and please remember not to clobber the
text screen holes if you decide to do something in DLGR.

As I have said before about DHGR demos, bitmapped DLGR demos are sexier than pixel
graphics demos like this one. There is no doubt about that.

Bill Buckels
bbuckels@mts.net

PS – Let me know if I forgot to mention something 

The Importance of a well placed C Saw cannot be overstated.

7/12/2014 Apple II DLGR Pixel Graphics in cc65 Page 46 of 46

mailto:bbuckels@mts.net

	Displaying Apple II Double Lo-Res Pixel Graphics in a cc65 C Program
	Table of Contents
	Introduction
	DLODEMO Program Summary
	DLGR Core Routines
	More than a Demo
	Building DLGR cc65 SYS Programs
	DLGR Itself
	Double-Res Mode
	Apple II Graphics in General
	Graphics Programming in General

	Getting Started in DLGR Pixel Graphics
	Auxiliary and Main Memory
	Setting Video Modes
	Lo-Res “Screen Holes” and Screen Memory
	Base Address Tables
	Text Screen Base Address Table
	DLGR Graphics Screen Base Address Table

	DLGR Colors
	Remapping Main Colors to Auxiliary Colors
	16 Colors – 4 Bits Per Pixel
	2 Vertical Pixels Per Byte
	Screen Resolution – 80 x 48 (Full Graphics) or 80 x 40 (Mixed Mode)

	Mixed Text and Graphics
	Font Routines
	The Extended Aztec C65 Bitmapped Font
	The “Tom Thumb” Font

	Graphics Primitives in DLGR
	Does Pixel Size Matter?
	Calculating Pixel Position
	Proportion and Aspect Ratio
	Precision Constraints
	Achieving a Reasonable Compromise

	Drawing Circles in DLGR
	Integer Algebra

	Drawing Equilateral Triangles in DLGR
	Drawing Lines in DLGR
	Plotting a Pixel in DLGR
	Setting the DLGR Pixel Color
	Drawing Horizontal Lines
	Drawing Vertical Lines
	Plotting a Pixel in DLGR – Alternate Method

	Drawing Squares in DLGR
	Drawing Boxes in DLGR
	Line Drawing Scripts in DLGR
	Dlodemo Program Organization
	Helper Functions
	Helper Function dloboxes()
	Helper Function dloworld()
	Readability Considerations
	Helper Function doublerod()

	Main Program

	Additional Notes

